login
A339828
a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - 4*a(n-4) + a(n-5) for n >= 6, where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 16, a(5) = 53.
5
1, 2, 5, 16, 53, 179, 610, 2081, 7103, 24250, 82793, 282671, 965098, 3295049, 11249999, 38409898, 131139593, 447738575, 1528675114, 5219223305, 17819542991, 60839725354, 207719815433, 709199811023, 2421359613226, 8267038830857, 28225436096975, 96367666726186
OFFSET
1,2
FORMULA
Let f(n) = floor(r*floor(s*n)) = A184922(n), where r = sqrt(2) and s = r + 1. Let a(1) = 1. Then a(n) = f(a(n-1)) for n >= 2.
Also, a(n) = 4*a(n-1) - 2*a(n-2) + a(n-3) - 4*a(n-4) + a(n-5) for n >= 6, where a(1) = 1, a(2) = 3, a(3) = 5, a(4) = 16, a(5) = 53.
G.f.: x*(-x^4 + x^3 + x^2 + 2*x - 1)/((x - 1)*(x^2 + x + 1)*(2*x^2 - 4*x + 1)). - Chai Wah Wu, Feb 15 2021
MATHEMATICA
z = 40; r = Sqrt[2]; s = 1 + Sqrt[2]; f[x_] := Floor[r*Floor[s*x]];
Table[f[n], {n, 1, z}] m (* A184922 *)
a[1] = 1; a[n_] := f[a[n - 1]]; Table[a[n], {n, 1, z}] (* A339828 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 07 2021
STATUS
approved