|
|
A339825
|
|
Odd bisection of the infinite Fibonacci word A003849.
|
|
5
|
|
|
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2 - [(2n+3)r] - [(2n+2)r], where [ ] = floor and r = golden ratio (A001622).
|
|
EXAMPLE
|
A003849 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,.. ), so that
A339824 = (0, 0, 1, 1, 0, 0, 1,...), the even bisection.
A339825 = (1, 0, 0, 0, 1, 0, 0,...), the odd bisection.
|
|
MATHEMATICA
|
r = (1 + Sqrt[5])/2; z = 300;
f[n_] := 2 - Floor[(n + 2) r] + Floor[(n + 1) r]; (*A003849*)
Table[2 - Floor[(2 n + 2) r] + Floor[(2 n + 1) r], {n, 0, Floor[z/2]}] (*A339824 *)
Table[2 - Floor[(2 n + 3) r] + Floor[(2 n + 2) r], {n, 0, Floor[z/2]}] (*A339825 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|