The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339824 Even bisection of the infinite Fibonacci word A003849. 5
 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0 LINKS Table of n, a(n) for n=0..85. FORMULA a(n) = 2 - [(2n+2)r] + [(2n+1)r], where [ ] = floor and r = golden ratio (A001622). EXAMPLE A003849 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, ...), so that A339824 = (0, 0, 1, 1, 0, 0, 1, ...), the even bisection, and A339825 = (1, 0, 0, 0, 1, 0, 0, ...), the odd bisection. MATHEMATICA r = (1 + Sqrt[5])/2; z = 300; f[n_] := 2 - Floor[(n + 2) r] + Floor[(n + 1) r]; (* A003849 *) Table[2 - Floor[(2 n + 2) r] + Floor[(2 n + 1) r], {n, 0, Floor[z/2]}](* A339824 *) Table[2 - Floor[(2 n + 3) r] + Floor[(2 n + 2) r], {n, 0, Floor[z/2]}](* A339825 *) CROSSREFS Cf. A001622, A096270, A339825, A339826, A339827. Sequence in context: A285031 A327222 A286063 * A278587 A188257 A132380 Adjacent sequences: A339821 A339822 A339823 * A339825 A339826 A339827 KEYWORD nonn AUTHOR Clark Kimberling, Dec 19 2020 EXTENSIONS Corrected by Michel Dekking, Feb 23 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 04:14 EST 2023. Contains 367506 sequences. (Running on oeis4.)