login
A339821
a(n) = phi(A019565(2n)), where phi is Euler totient function.
12
1, 2, 4, 8, 6, 12, 24, 48, 10, 20, 40, 80, 60, 120, 240, 480, 12, 24, 48, 96, 72, 144, 288, 576, 120, 240, 480, 960, 720, 1440, 2880, 5760, 16, 32, 64, 128, 96, 192, 384, 768, 160, 320, 640, 1280, 960, 1920, 3840, 7680, 192, 384, 768, 1536, 1152, 2304, 4608, 9216, 1920, 3840, 7680, 15360, 11520, 23040, 46080, 92160
OFFSET
0,2
FORMULA
If 4n = 2^e1 + 2^e2 + ... + 2^ek [e1 ... ek distinct], then a(n) = A006093(e1) * A006093(e2) * ... * A006093(ek).
a(n) = A339820(2n) = A000010(A019565(2n)) = A000010(A019565(2n+1)).
PROG
(PARI)
A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
A339821(n) = eulerphi(A019565(n+n));
(PARI) A339821(n) = { my(m=1, p=2); while(n>0, p = nextprime(1+p); if(n%2, m *= (p-1)); n >>= 1); (m); };
CROSSREFS
Bisection of A339820.
Cf. A000010, A003961, A003972, A006093, A019565, A339822 (2-adic valuation).
Cf. also A324651.
Sequence in context: A366170 A151732 A109554 * A269382 A253886 A253885
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 18 2020
STATUS
approved