login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102243
Expansion of Pi in golden base (i.e., in irrational base phi = (1+sqrt(5))/2) = A001622.
7
1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0
OFFSET
3
COMMENTS
George Bergman wrote his paper when he was 12. Mike Wallace interviewed him when Bergman was 14. - Robert G. Wilson v, Mar 14 2014
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 3..1002 (offset adapted by Georg Fischer, Jan 24 2019)
George Bergman, A number system with an irrational base, Math. Mag. 31 (1957), pp. 98-110.
Chittaranjan Pardeshi, 100000 digits of Pi in golden base
Mike Wallace, Mike Wallace Asks George Bergman: What Makes a Genius Tick?, Math. Mag. 31 (1958), p. 282.
FORMULA
Pi = 4/phi + Sum_{n>=0} (1/phi^(12*n)) * ( 8/((12*n+3)*phi^3) + 4/((12*n+5)*phi^5) - 4/((12*n+7)*phi^7) - 8/((12*n+9)*phi^9) - 4/((12*n+11)*phi^11) + 4/((12*n+13)*phi^13) ) where phi = (1+sqrt(5))/2. - Chittaranjan Pardeshi, May 16 2022
EXAMPLE
Pi = phi^2 + 1/phi^2 + 1/phi^5 + 1/phi^7 + ... thus Pi = 100.0100101010010001010101000001010... in golden base.
MATHEMATICA
RealDigits[Pi, GoldenRatio, 111][[1]] (* Robert G. Wilson v, Feb 26 2010 *)
PROG
(PARI) f=(1+sqrt(5))/2; z=Pi; b=0; m=100; for(n=1, m, c=ceil(log(z)/log(1/f)); z=z-1/f^c; b=b+1./10^c; if(n==m, print1(b, ", ")))
(PARI)
alist(len) = {
my(phi=quadgen(5), n=-1, pi=4/phi, gap=phi^3, hi=pi+gap, t=0, w=phi^3);
vector(len, i,
w = w/phi;
while(t+w < hi && t+w > pi,
n = n + 1;
pi += phi^(-12*n) * (
8 * phi^-3 / (12*n+3)
+ 4 * phi^-5 / (12*n+5)
- 4 * phi^-7 / (12*n+7)
- 8 * phi^-9 / (12*n+9)
- 4 * phi^-11 / (12*n+11)
+ 4 * phi^-13 / (12*n+13));
gap /= phi^12;
hi = pi + gap);
if( t+w <= pi, t += w; 1, 0))};
alist(1000) \\ Chittaranjan Pardeshi, May 18 2022
KEYWORD
cons,base,nonn
AUTHOR
Benoit Cloitre, Feb 18 2005
EXTENSIONS
Offset corrected by Lee A. Newberg, Apr 13 2018
STATUS
approved