login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062964 Pi in hexadecimal. 23
3, 2, 4, 3, 15, 6, 10, 8, 8, 8, 5, 10, 3, 0, 8, 13, 3, 1, 3, 1, 9, 8, 10, 2, 14, 0, 3, 7, 0, 7, 3, 4, 4, 10, 4, 0, 9, 3, 8, 2, 2, 2, 9, 9, 15, 3, 1, 13, 0, 0, 8, 2, 14, 15, 10, 9, 8, 14, 12, 4, 14, 6, 12, 8, 9, 4, 5, 2, 8, 2, 1, 14, 6, 3, 8, 13, 0, 1, 3, 7, 7, 11, 14, 5, 4, 6, 6, 12, 15, 3, 4, 14, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Bailey and Crandall conjecture that the terms of this sequence, apart from the first, are given by the formula floor(16*(x(n) - floor(x(n)))), where x(n) is determined by the recurrence equation x(n) = 16*x(n-1) + (120*n^2 - 89*n + 16)/(512*n^4 - 1024*n^3 + 712*n^2 - 206*n + 21) with the initial condition x(0) = 0. They have numerically verified the conjecture for the first 100,000 terms of the sequence. - Peter Bala, Oct 31 2013

Bailey, Borwein & Plouffe's ("BBP") formula allows one to compute the n-th hexadecimal digit of pi without calculating the preceding digits, cf. Wikipedia link. - M. F. Hasler, Mar 14 2015

REFERENCES

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 17-28.

LINKS

Harry J. Smith, Table of n, a(n) for n=1..20000

D. H. Bailey, Compendium of BBP-Type Formulas for Mathematical Constants

D. H. Bailey and R. E. Crandall, On the Random Character of Fundamental Constant Expansions, Experiment. Math. Volume 10, Issue 2 (2001), 175-190.

CalcCrypto, Pi in Hexadecimal

S. R. Finch, The Miraculous Bailey-Borwein-Plouffe Pi Algorithm

Steve Pagliarulo, Stu's pi page: base 16 (31 pages of numbers)

Johnny Vogler, More digits

Wikipedia, Bailey-Borwein-Plouffe formula.

FORMULA

a(n) = 8*A004601(4n)+4*A004601(4n+1)+2*A004601(4n+2)+1*A004601(4n+3).

If Pi is the expansion of Pi in base 10 Pi=3, 1415926...: a(n)=floor(16^n*Pi)-16*floor(16^(n-1)*Pi) - Benoit Cloitre, Mar 09 2002

EXAMPLE

3.243f6a8885a308d3...

MATHEMATICA

RealDigits[ N[ Pi, 115], 16] [[1]]

PROG

(PARI) { default(realprecision, 24300); x=Pi; for (n=1, 20000, d=floor(x); x=(x-d)*16; write("b062964.txt", n, " ", d)); } \\ Harry J. Smith, Apr 27 2009

(PARI) N=50; default(realprecision, .75*N); A062964=digits(Pi*16^N\1, 16) \\ M. F. Hasler, Mar 14 2015

CROSSREFS

Pi in base b: A004601 (b=2), A004602 (b=3), A004603 (b=4), A004604 (b=5), A004605 (b=6), A004606 (b=7), A006941 (b=8), A004608 (b=9), A000796 (b=10), A068436 (b=11), A068437 (b=12), A068438 (b=13), A068439 (b=14), A068440 (b=15), this sequence (b=16), A060707 (b=60).

Cf. A007514.

Sequence in context: A294209 A066257 A085591 * A010270 A230499 A023630

Adjacent sequences:  A062961 A062962 A062963 * A062965 A062966 A062967

KEYWORD

easy,nonn,base,cons

AUTHOR

Robert Lozyniak (11(AT)onna.com), Jul 22 2001

EXTENSIONS

More terms from Henry Bottomley, Jul 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 19:17 EST 2017. Contains 295128 sequences.