login
Odd bisection of the infinite Fibonacci word A003849.
5

%I #4 Dec 21 2020 07:24:45

%S 1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,1,

%T 1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,

%U 1,0,0,0,1,0,0,0,1,0,0,0,1,1,0,0,1,1

%N Odd bisection of the infinite Fibonacci word A003849.

%F a(n) = 2 - [(2n+3)r] - [(2n+2)r], where [ ] = floor and r = golden ratio (A001622).

%e A003849 = (0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,.. ), so that

%e A339824 = (0, 0, 1, 1, 0, 0, 1,...), the even bisection.

%e A339825 = (1, 0, 0, 0, 1, 0, 0,...), the odd bisection.

%t r = (1 + Sqrt[5])/2; z = 300;

%t f[n_] := 2 - Floor[(n + 2) r] + Floor[(n + 1) r]; (*A003849*)

%t Table[2 - Floor[(2 n + 2) r] + Floor[(2 n + 1) r], {n, 0, Floor[z/2]}] (*A339824 *)

%t Table[2 - Floor[(2 n + 3) r] + Floor[(2 n + 2) r], {n, 0, Floor[z/2]}] (*A339825 *)

%Y Cf. A001622, A096270, A339824, A339826, A339827.

%K nonn

%O 0

%A _Clark Kimberling_, Dec 19 2020