login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090387
Numerator of d(n)/n, where d(n) (A000005) is the number of divisors of n.
6
1, 1, 2, 3, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 4, 5, 2, 1, 2, 3, 4, 2, 2, 1, 3, 2, 4, 3, 2, 4, 2, 3, 4, 2, 4, 1, 2, 2, 4, 1, 2, 4, 2, 3, 2, 2, 2, 5, 3, 3, 4, 3, 2, 4, 4, 1, 4, 2, 2, 1, 2, 2, 2, 7, 4, 4, 2, 3, 4, 4, 2, 1, 2, 2, 2, 3, 4, 4, 2, 1, 5, 2, 2, 1, 4, 2, 4, 1, 2, 2, 4, 3, 4, 2, 4, 1, 2, 3, 2, 9, 2, 4, 2, 1, 8
OFFSET
1,3
COMMENTS
Values of n at which k first occurs, for k >= 1: 1, 3, 4, 15, 16, 175, 64, 105, 100, 567, 1024, 1925, 4096, 3645, 784, 945, 65536, ... - Robert G. Wilson v, Feb 04 2004. [Is this A136641? - Editors]
LINKS
EXAMPLE
a(6)=2 because the number of divisors of 6 is 4 and 4 divided by 6 equals 2/3, which has 2 as its numerator.
MAPLE
with(numtheory): seq(numer(tau(n)/n), n=1..105) ; # Zerinvary Lajos, Jun 04 2008
PROG
(PARI) A090387(n) = numerator(numdiv(n)/n); \\ Antti Karttunen, Sep 25 2018
(Python)
from math import gcd
from sympy import divisor_count
def A090387(n): return (d := divisor_count(n))//gcd(n, d) # Chai Wah Wu, Jun 20 2022
CROSSREFS
Cf. A000005, A090395 (denominators), A136641.
Sequence in context: A334052 A160570 A128830 * A030329 A300139 A300666
KEYWORD
easy,frac,nonn
AUTHOR
Ivan_E_Mayle(AT)a_provider.com, Jan 31 2004
EXTENSIONS
More terms from Robert G. Wilson v, Feb 04 2004
STATUS
approved