OFFSET
0,6
COMMENTS
The number of 2n-bead balanced binary necklaces is A003239(n). The number which are equivalent to their reverse, complement and reversed complement are respectively A128014(n), A000013(n) and A011782(n). - Andrew Howroyd, Sep 28 2017
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..100
FORMULA
MATHEMATICA
a3239[n_] := If[n==0, 1, Sum[EulerPhi[n/k]*Binomial[2k, k]/(2n), {k, Divisors[n]}]];
a128014[n_] := SeriesCoefficient[(1 + x)/Sqrt[1 - 4 x^2], {x, 0, n}];
a11782[n_] := SeriesCoefficient[(1 - x)/(1 - 2x), {x, 0, n}];
a13[n_] := If[n==0, 1, Sum[(EulerPhi[2d]*2^(n/d)), {d, Divisors[n]}]/(2n)];
a45674[n_] := a45674[n] = If[n==0, 1, If[EvenQ[n], 2^(n/2-1) + a45674[n/2], 2^((n-1)/2)]];
a[n_] := a3239[n] - a128014[n] - a13[n] - a11782[n] + 2 a45674[n];
a /@ Range[0, 100] (* Jean-François Alcover, Sep 23 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved