Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jul 02 2023 18:09:09
%S 1,8,32,168,784,3840,18432,89216,430336,2078720,10035200,48457728,
%T 233967616,1129709568,5454692352,26337640448,127169265664,
%U 614027755520,2964787822592,14315262836736
%N On a 3 X 3 board, number of n-move routes of chess king ending in the central square.
%C From _Johannes W. Meijer_, Aug 01 2010: (Start)
%C The a(n) represent the number of n-move paths of a chess king on a 3 X 3 board that end or start in the central square m (m = 5).
%C Inverse binomial transform of A090390 (without the first leading 1).
%C (End)
%C From _R. J. Mathar_, Oct 12 2010: (Start)
%C The row n=3 of an array T(n,k) counting king walks on an n X n board starting on a square on the diagonal next to a corner:
%C 1,8,32,168,784,3840,18432,89216,430336,2078720,10035200,48457728,233967616,
%C 1,8,47,275,1610,9425,55175,323000,1890875,11069375,64801250,379353125,
%C 1,8,47,318,2013,13140,84555,547722,3537081,22874400,147831399,955690326,
%C 1,8,47,318,2134,14539,99267,679189,4650100,31848677,218164072,1494530576,
%C 1,8,47,318,2134,14880,103920,733712,5187856,36796224,261164848,1855327584,
%C 1,8,47,318,2134,14880,104885,748845,5382180,38880243,281743740,2045995632,
%C 1,8,47,318,2134,14880,104885,751590,5430735,39556080,289541500,2127935700,
%C 1,8,47,318,2134,14880,104885,751590,5438580,39710495,291852880,2156410817,
%C 1,8,47,318,2134,14880,104885,751590,5438580,39733008,292340803,2164218694,
%C 1,8,47,318,2134,14880,104885,751590,5438580,39733008,292405638,2165752797, (End)
%H Mike Oakes, <a href="http://groups.yahoo.com/group/primenumbers/message/12980">KingMovesForPrimes</a>.
%H Zak Seidov, <a href="http://groups.yahoo.com/group/primenumbers/message/12947">KingMovesForPrimes</a>.
%H Zak Seidov et al., <a href="/A086346/a086346.txt">New puzzle? King moves for primes</a>, digest of 28 messages in primenumbers group, Jul 13 - Jul 23, 2003. [Cached copy]
%H Sleephound, <a href="http://groups.yahoo.com/group/primenumbers/message/12976">KingMovesForPrimes</a>.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2, 12, 8).
%F a(n) = (1/16)(4(-2)^(n+1) + (2+sqrt(8))^(n+2) + (2-sqrt(8))^(n+2)).
%F From _Johannes W. Meijer_, Aug 01 2010: (Start)
%F G.f.: ( 1+6*x+4*x^2 ) / ( (2*x+1)*(-4*x^2-4*x+1) ).
%F a(n) = 2*a(n-1) + 12*a(n-2) + 8*a(n-3) with a(0)=1, a(1)=8 and a(2)=32.
%F Lim_{k->infinity} a(n+k)/a(k) = A084128(n) + 2*A057087(n-1)*sqrt(2). (End)
%F 2*a(n) = 3*A057087(n) + 2*A057087(n-1) - (-2)^n. - _R. J. Mathar_, May 21 2019
%p with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [1,1,1,1,0,1,1,1,1]: A:=Matrix([[0,1,0,1,1,0,0,0,0],[1,0,1,1,1,1,0,0,0],[0,1,0,0,1,1,0,0,0],[1,1,0,0,1,0,1,1,0],A[5],[0,1,1,0,1,0,0,1,1],[0,0,0,1,1,0,0,1,0],[0,0,0,1,1,1,1,0,1],[0,0,0,0,1,1,0,1,0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax); # _Johannes W. Meijer_, Aug 01 2010
%t Table[(1/16)(4(-2)^(n+1)+(2+Sqrt[8])^(n+2)+(2-Sqrt[8])^(n+2)), {n, 0, 19}]
%Y Cf. A086346, A086347.
%Y Cf. A179597.
%K nonn,easy
%O 0,2
%A _Zak Seidov_, Jul 17 2003
%E Offset changed and edited by _Johannes W. Meijer_, Jul 15 2010