login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322403
Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by multiplying those of n and of k (see Comments for precise definition).
2
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 2, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 4, 15, 4, 5, 0, 0, 6, 42, 48, 48, 42, 6, 0, 0, 7, 6, 51, 16, 51, 6, 7, 0, 0, 8, 56, 60, 292, 292, 60, 56, 8, 0, 0, 9, 8, 63, 12, 5, 12, 63, 8, 9, 0, 0, 10, 150, 192, 448, 438, 438, 448, 192
OFFSET
0,8
COMMENTS
For any n >= 0 and k >= 0:
- let r_n be the lengths of runs in binary expansion of n,
- for n = 0: we assume that r_0 = (),
- when n > 0: let R_n be the #r_n-periodic sequence whose first #r_n terms match r_n,
- r_{T(n, k)} has lcm(#r_n, #r_k) terms and r_{T(n, k)}(i) = R_n(i) * R_k(i) for i = 1..lcm(#r_n, #r_k).
FORMULA
For any m >= 0, n >= 0 and k >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(m, A322404(n, k)) = A322404(T(m, n), T(m, k)) (T distributes over A322404),
- T(n, 0) = 0 (0 is an absorbing element for T),
- T(n, 1) = n (1 is an neutral element for T),
- T(n, 3) = A001196(n),
- T(n, 7) = A097254(n+1),
- T(n, 15) = A097262(n),
- T(n, n) = A322149(n),
- A005811(T(n, k)) = lcm(A005811(n), A005811(k)),
- T(2^n - 1, 2^k - 1) = 2^(n*k) - 1.
- T(2^n, 2^k) = 2^(n*k) when n > 0 and k > 0,
- T(n, k) is odd iff both n and k are odd.
EXAMPLE
Array T(n, k) begins (in decimal):
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+--------------------------------------------------------
0| 0 0 0 0 0 0 0 0 0 0 0
1| 0 1 2 3 4 5 6 7 8 9 10
2| 0 2 2 12 4 42 6 56 8 150 10
3| 0 3 12 15 48 51 60 63 192 195 204
4| 0 4 4 48 16 292 12 448 64 2124 36
5| 0 5 42 51 292 5 438 455 2184 9 2730
6| 0 6 6 60 12 438 30 504 24 3294 54
7| 0 7 56 63 448 455 504 511 3584 3591 3640
8| 0 8 8 192 64 2184 24 3584 512 33048 136
Array T(n, k) begins (in binary):
n\k| 0 1 10 11 100 101 110
----+---------------------------------------------------------------
0| 0 0 0 0 0 0 0
1| 0 1 10 11 100 101 110
10| 0 10 10 1100 100 101010 110
11| 0 11 1100 1111 110000 110011 111100
100| 0 100 100 110000 10000 100100100 1100
101| 0 101 101010 110011 100100100 101 110110110
110| 0 110 110 111100 1100 110110110 11110
111| 0 111 111000 111111 111000000 111000111 111111000
1000| 0 1000 1000 11000000 1000000 100010001000 11000
PROG
(PARI) T(n, k) = my (v=0, p=1, rn=n, rk=k, b=if ((max(n, 1)%2)&&(max(k, 1)%2), 1, 0)); while (1, my (vn=if (rn==0, 0, valuation(rn+(rn%2), 2)), vk=if
(rk==0, 0, valuation(rk+(rk%2), 2)), w=vn*vk); v+=b*p*(2^w-1); rn\=2^vn; rk\=2^vk; if (rn==0 && rk==0, return (v), rn==0, rn=n, rk==0, rk=k); p*=2^w; b=1-b)
CROSSREFS
See A322404 for the additive variant.
Sequence in context: A341288 A325820 A109042 * A128540 A160692 A051775
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Dec 06 2018
STATUS
approved