login
A322404
Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by adding those of n and of k (see Comments for precise definition).
1
0, 1, 1, 2, 3, 2, 3, 12, 12, 3, 4, 7, 12, 7, 4, 5, 24, 56, 56, 24, 5, 6, 51, 24, 15, 24, 51, 6, 7, 28, 3276, 112, 112, 3276, 28, 7, 8, 15, 28, 455, 48, 455, 28, 15, 8, 9, 48, 240, 120, 25368, 25368, 120, 240, 48, 9, 10, 99, 48, 31, 56, 51, 56, 31, 48, 99, 10
OFFSET
0,4
COMMENTS
For any n >= 0 and k >= 0:
- let r_n be the lengths of runs in binary expansion of n,
- for n = 0: we assume that r_0 = (0),
- let R_n be the #r_n-periodic sequence whose first #r_n terms match r_n,
- r_{T(n, k)} has lcm(#r_n, #r_k) terms and r_{T(n, k)}(i) = R_n(i) + R_k(i) for i = 1..lcm(#r_n, #r_k).
FORMULA
For any m >= 0, n >= 0 and k >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 0) = n (0 is a neutral element for T),
- T(n, 1) = A175046(n),
- T(n, n) = A001196(n),
- A005811(T(n, k)) = max(A005811(n), A005811(k), lcm(A005811(n), A005811(k))),
- T(2^n - 1, 2^k - 1) = 2^(n+k) - 1,
- T(2^n, 2^k) = 3 * 2^(n+k) when n > 0 and k > 0,
- T(n, k) is odd iff both n and k are odd.
EXAMPLE
Array T(n, k) begins (in decimal):
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+------------------------------------------------------------------------
0| 0 1 2 3 4 5 6 7 8 9 10
1| 1 3 12 7 24 51 28 15 48 99 204
2| 2 12 12 56 24 3276 28 240 48 12700 204
3| 3 7 56 15 112 455 120 31 224 903 3640
4| 4 24 24 112 48 25368 56 480 96 99896 792
5| 5 51 3276 455 25368 51 29596 3855 199728 99 13421772
6| 6 28 28 120 56 29596 60 496 112 116540 924
7| 7 15 240 31 480 3855 496 63 960 7695 61680
8| 8 48 48 224 96 199728 112 960 192 792688 3120
Array T(n, k) begins (in binary):
n\k| 0 1 10 11 100
----+--------------------------------------------------------
0| 0 1 10 11 100
1| 1 11 1100 111 11000
10| 10 1100 1100 111000 11000
11| 11 111 111000 1111 1110000
100| 100 11000 11000 1110000 110000
101| 101 110011 110011001100 111000111 110001100011000
110| 110 11100 11100 1111000 111000
111| 111 1111 11110000 11111 111100000
1000| 1000 110000 110000 11100000 1100000
PROG
(PARI) T(n, k) = my (v=0, p=1, rn=n, rk=k, b=if ((max(n, 1)%2)&&(max(k, 1)%2), 1, 0)); while (1, my (vn=if (rn==0, 0, valuation(rn+(rn%2), 2)), vk=if
(rk==0, 0, valuation(rk+(rk%2), 2)), w=vn+vk); v+=b*p*(2^w-1); rn\=2^vn; rk\=2^vk; if (rn==0 && rk==0, return (v), rn==0, rn=n, rk==0, rk=k); p*=2^w; b=1-b)
CROSSREFS
See A322403 for the multiplicative variant.
Sequence in context: A194603 A183465 A223168 * A077942 A077989 A109620
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Dec 06 2018
STATUS
approved