login
A194603
Smallest prime either of the form n*2^k - 1 or n*2^k + 1, k >= 0, or 0 if no such prime exists.
13
2, 3, 2, 3, 11, 5, 13, 7, 17, 11, 23, 11, 53, 13, 29, 17, 67, 17, 37, 19, 41, 23, 47, 23, 101, 53, 53, 29, 59, 29, 61, 31, 67, 67, 71, 37, 73, 37, 79, 41, 83, 41, 173, 43, 89, 47, 751, 47, 97, 101, 101, 53, 107, 53, 109, 113, 113, 59, 1889, 59, 487, 61, 127
OFFSET
1,1
COMMENTS
Primes arising from A194591 (or 0 if no such prime exists).
Many of these terms are in A093868.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
EXAMPLE
For n=7, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(7)=13.
MATHEMATICA
Table[k = 0; While[! PrimeQ[a = n*2^k - 1] && ! PrimeQ[a = n*2^k + 1], k++]; a, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
n2k[n_]:=Module[{k=0}, While[NoneTrue[n*2^k+{1, -1}, PrimeQ], k++]; SelectFirst[ n*2^k+{-1, 1}, PrimeQ]]; Array[n2k, 70] (* The program uses the NoneTrue and SelectFirst functions from Mathematica version 10 *) (* Harvey P. Dale, Jun 03 2015 *)
KEYWORD
nonn
AUTHOR
STATUS
approved