login
A194636
Least k >= 0 such that (2*n-1)*2^k - 1 or (2*n-1)*2^k + 1 is prime, or -1 if no such value exists.
13
0, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 5, 3, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 3, 6, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 5, 1, 3, 4, 1, 1, 1, 1, 2, 2, 1, 4, 1, 2
OFFSET
1,7
COMMENTS
Bisection of A194591: a(n) = A194591(2*n-1).
A194637 gives the record values.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Brier Number
EXAMPLE
For n=4, 7*2^0-1 and 7*2^0+1 are composite, but 7*2^1-1=13 is prime, so a(4)=1.
MATHEMATICA
Table[n = 2*n - 1; k = 0; While[! PrimeQ[n*2^k - 1] && ! PrimeQ[n*2^k + 1], k++]; k, {n, 100}] (* Arkadiusz Wesolowski, Sep 04 2011 *)
p[n_]:=Module[{c=2n-1, k=0}, While[!Or@@PrimeQ[c*2^k+{1, -1}], k++]; k]; Array[ p, 90] (* Harvey P. Dale, Mar 08 2013 *)
KEYWORD
sign
AUTHOR
STATUS
approved