The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A223168 Triangle S(n, k) by rows: coefficients of 2^((n-1)/2))*(x^(1/2)*d/dx)^n when n is odd, and of 2^(n/2)*(x^(1/2)*d/dx)^n when n is even. 32
 1, 1, 2, 3, 2, 3, 12, 4, 15, 20, 4, 15, 90, 60, 8, 105, 210, 84, 8, 105, 840, 840, 224, 16, 945, 2520, 1512, 288, 16, 945, 9450, 12600, 5040, 720, 32, 10395, 34650, 27720, 7920, 880, 32, 10395, 124740, 207900, 110880, 23760, 2112, 64, 135135, 540540, 540540, 205920, 34320, 2496, 64 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also coefficients in the expansion of k-th derivative of exp(n*x^2), see Mathematica program. - Vaclav Kotesovec, Jul 16 2013 LINKS Vincenzo Librandi, Rows n = 0..60, flattened U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580. U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229 [math.CA], 2014. EXAMPLE Triangle begins:        1;        1,      2;        3,      2;        3,     12,      4;       15,     20,      4;       15,     90,     60,      8;      105,    210,     84,      8;      105,    840,    840,    224,    16;      945,   2520,   1512,    288,    16;      945,   9450,  12600,   5040,   720,   32;    10395,  34650,  27720,   7920,   880,   32;    10395, 124740, 207900, 110880, 23760, 2112, 64;   135135, 540540, 540540, 205920, 34320, 2496, 64;   . Expansion takes the form: 2^0 (x^(1/2)*d/dx)^1 = 1*x^(1/2)*d/dx. 2^1 (x^(1/2)*d/dx)^2 = 1*d/dx + 2*x*d^2/dx^2. 2^1 (x^(1/2)*d/dx)^3 = 3*x^(1/2)*d^2/dx^2 + 2*x^(3/2)*d^3/dx^3. 2^2 (x^(1/2)*d/dx)^4 = 3*d^2/dx^2 + 12*x*d^3/dx^3 + 4*x^2*d^4/dx^4. 2^2 (x^(1/2)*d/dx)^5 = 15*x^(1/2)*d^3/dx^3 + 20*x^(3/2)*d^4/dx^4 + 4*x^(5/2)*d^5/dx^5. ` ` MAPLE a[0]:= f(x); for i from 1 to 13 do a[i]:= simplify(2^((i+1)mod 2)*x^(1/2)*(diff(a[i-1], x\$1))); end do; MATHEMATICA Flatten[CoefficientList[Expand[FullSimplify[Table[D[E^(n*x^2), {x, k}]/(E^(n*x^2)*(2*n)^Floor[(k+1)/2]), {k, 1, 13}]]]/.x->1, n]] (* Vaclav Kotesovec, Jul 16 2013 *) CROSSREFS Odd rows includes absolute values of A098503 from right to left. Cf. A223169-A223172, A223523-A223532, A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522. Sequence in context: A093868 A194603 A183465 * A322404 A077942 A077989 Adjacent sequences:  A223165 A223166 A223167 * A223169 A223170 A223171 KEYWORD nonn,tabf AUTHOR Udita Katugampola, Mar 17 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 31 04:36 EDT 2021. Contains 346367 sequences. (Running on oeis4.)