login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A223168 Triangle S(n, k) by rows: coefficients of 2^((n-1)/2))*(x^(1/2)*d/dx)^n when n is odd, and of 2^(n/2)*(x^(1/2)*d/dx)^n when n is even. 32
1, 1, 2, 3, 2, 3, 12, 4, 15, 20, 4, 15, 90, 60, 8, 105, 210, 84, 8, 105, 840, 840, 224, 16, 945, 2520, 1512, 288, 16, 945, 9450, 12600, 5040, 720, 32, 10395, 34650, 27720, 7920, 880, 32, 10395, 124740, 207900, 110880, 23760, 2112, 64, 135135, 540540, 540540, 205920, 34320, 2496, 64 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Also coefficients in the expansion of k-th derivative of exp(n*x^2), see Mathematica program. - Vaclav Kotesovec, Jul 16 2013

LINKS

Vincenzo Librandi, Rows n = 0..60, flattened

U. N. Katugampola, Mellin Transforms of Generalized Fractional Integrals and Derivatives, Appl. Math. Comput. 257(2015) 566-580.

U. N. Katugampola, Existence and Uniqueness results for a class of Generalized Fractional Differential Equations, arXiv preprint arXiv:1411.5229 [math.CA], 2014.

EXAMPLE

Triangle begins:

       1;

       1,      2;

       3,      2;

       3,     12,      4;

      15,     20,      4;

      15,     90,     60,      8;

     105,    210,     84,      8;

     105,    840,    840,    224,    16;

     945,   2520,   1512,    288,    16;

     945,   9450,  12600,   5040,   720,   32;

   10395,  34650,  27720,   7920,   880,   32;

   10395, 124740, 207900, 110880, 23760, 2112, 64;

  135135, 540540, 540540, 205920, 34320, 2496, 64;

  .

Expansion takes the form:

2^0 (x^(1/2)*d/dx)^1 = 1*x^(1/2)*d/dx.

2^1 (x^(1/2)*d/dx)^2 = 1*d/dx + 2*x*d^2/dx^2.

2^1 (x^(1/2)*d/dx)^3 = 3*x^(1/2)*d^2/dx^2 + 2*x^(3/2)*d^3/dx^3.

2^2 (x^(1/2)*d/dx)^4 = 3*d^2/dx^2 + 12*x*d^3/dx^3 + 4*x^2*d^4/dx^4.

2^2 (x^(1/2)*d/dx)^5 = 15*x^(1/2)*d^3/dx^3 + 20*x^(3/2)*d^4/dx^4 + 4*x^(5/2)*d^5/dx^5.

`

`

MAPLE

a[0]:= f(x);

for i from 1 to 13 do

a[i]:= simplify(2^((i+1)mod 2)*x^(1/2)*(diff(a[i-1], x$1)));

end do;

MATHEMATICA

Flatten[CoefficientList[Expand[FullSimplify[Table[D[E^(n*x^2), {x, k}]/(E^(n*x^2)*(2*n)^Floor[(k+1)/2]), {k, 1, 13}]]]/.x->1, n]] (* Vaclav Kotesovec, Jul 16 2013 *)

CROSSREFS

Odd rows includes absolute values of A098503 from right to left.

Cf. A223169-A223172, A223523-A223532, A008277, A019538, A035342, A035469, A049029, A049385, A092082, A132056, A223511-A223522.

Sequence in context: A093868 A194603 A183465 * A077942 A077989 A109620

Adjacent sequences:  A223165 A223166 A223167 * A223169 A223170 A223171

KEYWORD

nonn,tabf

AUTHOR

Udita Katugampola, Mar 17 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 07:27 EST 2016. Contains 278698 sequences.