login
A098503
Triangle T(n,k) by rows: coefficient [x^(n-k)] of 2^n * n! *L(n,1/2,x), with L the generalized Laguerre polynomials in the Abramowitz-Stegun normalization.
7
1, -2, 3, 4, -20, 15, -8, 84, -210, 105, 16, -288, 1512, -2520, 945, -32, 880, -7920, 27720, -34650, 10395, 64, -2496, 34320, -205920, 540540, -540540, 135135, -128, 6720, -131040, 1201200, -5405400, 11351340, -9459450, 2027025, 256, -17408
OFFSET
0,2
FORMULA
T(n, k) = (-2)^n * (-1)^k * n!/(n-k)! * binomial(n+1/2,k), = (-1)^(n+k) *2^(n-2k) *k! *binomial(2n+1,2k)*binomial(2k,k), n>=0, k<=n.
EXAMPLE
2^0 *0! *L(0,1/2,x) = 1.
2^1 *1! *L(1,1/2,x) = -2*x + 3.
2^2 *2! *L(2,1/2,x) = 4*x^2 - 20*x + 15.
2^3 *3! *L(3,1/2,x) = -8*x^3 + 84*x^2 - 210*x + 105.
2^4 *4! *L(4,1/2,x) = 16*x^4 - 288*x^3 + 1512*x^2 - 2520*x + 945.
Triangle begins:
1;
-2, 3;
4, -20, 15;
-8, 84, -210, 105;
16, -288, 1512, -2520, 945;
-32, 880, -7920, 27720, -34650, 10395;
64, -2496, 34320, -205920, 540540, -540540, 135135;
MATHEMATICA
Table[Reverse[Table[2^n*(-1)^k*n!/k!*Binomial[n + 1/2, n - k], {k, 0, n}]], {n, 0, 7}] (* T. D. Noe, Apr 05 2013 *)
CROSSREFS
Columns include (-1)^n times A000079, n/2*A014480. Diagonals include A001147, -A000906, 4*A001881.
Sequence in context: A169901 A012285 A012281 * A092974 A058186 A024632
KEYWORD
sign,tabl
AUTHOR
Ralf Stephan, Sep 15 2004
STATUS
approved