Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 18 2022 22:20:48
%S 1,1,1,0,2,2,0,0,3,3,0,0,0,5,5,0,0,0,0,8,8,0,0,0,0,0,13,13,0,0,0,0,0,
%T 0,21,21,0,0,0,0,0,0,0,34,34,0,0,0,0,0,0,0,0,55,55,0,0,0,0,0,0,0,0,0,
%U 89,89,0,0,0,0,0,0,0,0,0,0,144,144
%N Triangle A127647 * A097806, read by rows.
%C Row sums = A094895 starting (1, 2, 4, 6, 10, 16, 26, ...). A128541 = A097806 * A127647.
%H G. C. Greubel, <a href="/A128540/b128540.txt">Rows n = 1..100 of triangle, flattened</a>
%F A127646 * A097806 as infinite lower triangular matrices.
%e First few rows of the triangle:
%e 1;
%e 1, 1;
%e 0, 2, 2;
%e 0, 0, 3, 3;
%e 0, 0, 0, 5, 5;
%e 0, 0, 0, 0, 8, 8;
%e ...
%t Table[If[k==n || k==n-1, Fibonacci[n], 0]], {n, 15}, {k, n}]//Flatten (* _G. C. Greubel_, Jul 11 2019 *)
%o (PARI) T(n,k) = if(k==n || k==n-1, fibonacci(n), 0); \\ _G. C. Greubel_, Jul 11 2019
%o (Magma) [k eq n select Fibonacci(n) else k eq n-1 select Fibonacci(n) else 0: k in [1..n], n in [1..15]]; // _G. C. Greubel_, Jul 11 2019
%o (Sage)
%o def T(n, k):
%o if (k==n): return fibonacci(n)
%o elif (k==n-1): return fibonacci(n)
%o else: return 0
%o [[T(n, k) for k in (1..n)] for n in (1..15)] # _G. C. Greubel_, Jul 11 2019
%Y Cf. A127647, A097806, A128541.
%K nonn,tabl
%O 1,5
%A _Gary W. Adamson_, Mar 10 2007