login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081714
a(n) = F(n)*L(n+1) where F=Fibonacci and L=Lucas numbers.
8
0, 3, 4, 14, 33, 90, 232, 611, 1596, 4182, 10945, 28658, 75024, 196419, 514228, 1346270, 3524577, 9227466, 24157816, 63245987, 165580140, 433494438, 1134903169, 2971215074, 7778742048, 20365011075, 53316291172, 139583862446, 365435296161, 956722026042
OFFSET
0,2
COMMENTS
Also convolution of Fibonacci and Lucas numbers.
For n>2, a(n) represents twice the area of the triangle created by the three points ((L(n-3), L(n-2)), (L(n-1), L(n)) and (F(n+3), F(n+2)) where L(k)=A000032(k) and F(k)= A000045(k). - J. M. Bergot, May 20 2014
For n>1, a(n) is the remainder when F(n+3)*F(n+4) is divided by F(n+1)*F(n+2). - J. M. Bergot, May 24 2014
FORMULA
G.f.: x*(3-2*x)/((1+x)*(1-3*x+x^2)).
a(n) = A122367(n) - (-1)^n. - R. J. Mathar, Jul 23 2010
a(n) = (L(n+1)^2 - F(2*n+2))/2 = ( A001254(n+1) - A001906(n+1) )/2. - Gary Detlefs, Nov 28 2010
a(n+1) = - A186679(2*n+1). - Reinhard Zumkeller, Feb 25 2011
a(n) = A035513(1,n-1)*A035513(2,n-1). - R. J. Mathar, Sep 04 2016
a(n)+a(n+1) = A005248(n+1). - R. J. Mathar, Sep 04 2016
a(n) = (-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n)) / sqrt(5)). - Colin Barker, Sep 28 2016
MAPLE
with(combinat): F:=n-> fibonacci(n): L:= n-> F(n+1)+F(n-1):
a:= n-> F(n)*L(n+1): seq(a(n), n=0..30);
MATHEMATICA
Fibonacci[Range[0, 50]]*LucasL[Range[0, 50]+1] (* Vladimir Joseph Stephan Orlovsky, Mar 17 2011*)
PROG
(PARI) x='x+O('x^51); for(n=0, 50, print1(polcoeff(serconvol(Ser((1+2*x)/(1-x-x*x)), Ser(x/(1-x-x*x))), n)", "))
(PARI) a(n)=fibonacci(n)*(fibonacci(n+2)+fibonacci(n))
(PARI) a(n) = round((-(-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/sqrt(5))) \\ Colin Barker, Sep 28 2016
(Magma) [Fibonacci(n)*Lucas(n+1): n in [0..30]]; // Vincenzo Librandi, Sep 08 2012
(Sage) [fibonacci(n)*(fibonacci(n+2)+fibonacci(n)) for n in (0..30)] # G. C. Greubel, Jan 07 2019
(GAP) List([0..30], n -> Fibonacci(n)*(Fibonacci(n+2)+Fibonacci(n))); # G. C. Greubel, Jan 07 2019
CROSSREFS
Sequence in context: A332270 A057433 A006074 * A117718 A268700 A349001
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Apr 03 2003
EXTENSIONS
Simpler definition from Michael Somos, Mar 16 2004
STATUS
approved