login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236075
Odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) both prime.
3
5, 29, 79, 101, 103, 109, 353, 487, 821, 1367, 1811, 2111, 2593, 2617, 2939, 2969, 3001, 3659, 3727, 3877, 3911, 5347, 5779, 6481, 6959, 7121, 9059, 9649, 10007, 10099, 11299, 11311, 11827, 12343, 12511, 12539, 12589, 12689, 12923, 13781, 13967, 14249, 15859, 15923, 16363, 16889, 17321, 17683, 17881, 18181
OFFSET
1,1
COMMENTS
By the conjecture in A236074, this sequence should have infinitely many terms.
EXAMPLE
a(1) = 5 since neither prime(2*2) - 2*prime(2) = 1 nor prime(3) - 2*prime((3-1)/2) = 1 is prime, but prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are both prime.
MATHEMATICA
PQ[n_]:=n>0&&PrimeQ[n]
p[n_]:=PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]]
n=0; Do[If[p[Prime[k]], n=n+1; Print[n, " ", Prime[k]]], {k, 2, 10^6}]
PROG
(PARI) s=[]; forprime(p=3, 20000, if(isprime(prime(2*p)-2*prime(p)) && isprime(prime(p)-2*prime((p-1)/2)), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014
CROSSREFS
Sequence in context: A087348 A154412 A339935 * A272650 A050409 A111937
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 19 2014
STATUS
approved