login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) both prime.
3

%I #8 Jan 19 2014 04:44:33

%S 5,29,79,101,103,109,353,487,821,1367,1811,2111,2593,2617,2939,2969,

%T 3001,3659,3727,3877,3911,5347,5779,6481,6959,7121,9059,9649,10007,

%U 10099,11299,11311,11827,12343,12511,12539,12589,12689,12923,13781,13967,14249,15859,15923,16363,16889,17321,17683,17881,18181

%N Odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) both prime.

%C By the conjecture in A236074, this sequence should have infinitely many terms.

%H Zhi-Wei Sun, <a href="/A236075/b236075.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 5 since neither prime(2*2) - 2*prime(2) = 1 nor prime(3) - 2*prime((3-1)/2) = 1 is prime, but prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are both prime.

%t PQ[n_]:=n>0&&PrimeQ[n]

%t p[n_]:=PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]]

%t n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,2,10^6}]

%o (PARI) s=[]; forprime(p=3, 20000, if(isprime(prime(2*p)-2*prime(p)) && isprime(prime(p)-2*prime((p-1)/2)), s=concat(s, p))); s \\ _Colin Barker_, Jan 19 2014

%Y Cf. A000040, A236074.

%K nonn

%O 1,1

%A _Zhi-Wei Sun_, Jan 19 2014