login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A236073 Primes p such that p^4 + p + 1 and p^4 - p - 1 are also prime. 0
2, 5, 11, 239, 1871, 4001, 4397, 6971, 12647, 12689, 13337, 13619, 15401, 19391, 19559, 19739, 20201, 20297, 22871, 22937, 28307, 30029, 32561, 36299, 36929, 39569, 44279, 45497, 47441, 48767, 50069, 53897, 55871 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes in the sequence A236072.

LINKS

Table of n, a(n) for n=1..33.

EXAMPLE

6971 is prime, 6971^4 - 6971 - 1 is prime, and 6971^4 + 6971 + 1 is prime. So 6971 is a member of this sequence.

PROG

(Python)

import sympy

from sympy import isprime

{print(p) for p in range(10**5) if isprime(p**4+p+1) and isprime(p**4-p-1) and isprime(p)}

(PARI) s=[]; forprime(p=2, 55871, if(isprime(p^4+p+1)&&isprime(p^4-p-1), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014

CROSSREFS

Cf. A236072, A236071, A236044.

Sequence in context: A123165 A098438 A225955 * A064772 A107989 A069504

Adjacent sequences:  A236070 A236071 A236072 * A236074 A236075 A236076

KEYWORD

nonn

AUTHOR

Derek Orr, Jan 19 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 10:47 EDT 2020. Contains 334840 sequences. (Running on oeis4.)