login
A107989
Consider primes p such that integer part of the volume of cube with faces of area p is prime; sequence gives integer part of volumes.
2
2, 5, 11, 281, 839, 1201, 1499, 2081, 9769, 10091, 11483, 12583, 14221, 20089, 21491, 26417, 36931, 37633, 41621, 47251, 47903, 52889, 64781, 72643, 73019, 75541, 88037, 93701, 94111, 121937, 122533, 138041, 139439, 143503, 147289, 179917
OFFSET
1,1
LINKS
FORMULA
V = floor(sqrt(p)^3), p is prime and the area of the face of a cube.
EXAMPLE
p = 5, volume = floor(sqrt(5)^3) = 11 a prime.
MATHEMATICA
Select[Floor[(Sqrt[#])^3]&/@Prime[Range[500]], PrimeQ] (* Harvey P. Dale, Dec 05 2018 *)
PROG
(PARI) g(n) = forprime(x=2, n, y=floor(sqrt(x)^3); if(isprime(y), print1(y, ", ")))
CROSSREFS
A107990 gives areas of faces.
Sequence in context: A376768 A236073 A064772 * A069504 A158997 A101828
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Jun 13 2005
EXTENSIONS
Definition corrected by N. J. A. Sloane, Dec 04 2018. Thanks to Harvey P. Dale for pointing out that something was wrong.
STATUS
approved