login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236070
Primes p such that f(f(p)) is prime where f(x) = x^8 + 1.
0
7, 59, 163, 929, 977, 1373, 1549, 1619, 1913, 2113, 2593, 4397, 5417, 5651, 6397, 6659, 6833, 7351, 7793, 7883, 8641, 9719, 10091, 10477, 10949, 11243, 12239, 13441, 13457, 13691, 14753, 15349, 15467, 15971, 17747, 19051
OFFSET
1,1
FORMULA
a(n) = (A235983(n)-1)^(1/8).
EXAMPLE
1619 is prime and (1619^8+1)^8+1 is also prime.
MATHEMATICA
Select[Prime[Range[2500]], PrimeQ[(#^8+1)^8+1]&] (* Harvey P. Dale, Dec 17 2022 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**5) if isprime(p) and isprime((p**8+1)**8+1)}
(PARI) isok(p) = isprime(p) && (q = p^8+1) && isprime(q^8+1); \\ Michel Marcus, Jan 19 2014
CROSSREFS
Cf. A235983.
Sequence in context: A140371 A181424 A142511 * A059705 A359691 A218201
KEYWORD
nonn
AUTHOR
Michel Marcus and Derek Orr, Jan 19 2014
STATUS
approved