OFFSET
1,3
COMMENTS
The 0's in the sequence are definite. There exists both a maximum and a minimum number that a(n) can be based on n. They are given in the programs below as Max(n) and Min(n), respectively.
It is known that a(22) = 5117557126, a(25) = 31301, a(29) = 35751665247, a(32) = 2112, a(33) = 1224103, a(37) = 111, a(40) = 102531321, a(48) = 25236435456, a(50) = 101, a(66) = 2524232305, a(78) = 453362316342, a(98) = 100, and a(100) = 20102.
There are an infinite number of nonzero entries. First, note if a(n) is nonzero, a(n) >= n. Further, a(9) = 10, a(98) = 100, a(997) = 1000, ..., a(10^k-k) = 10^k for all k >= 0.
For n = 21, 23, and 24, a(n) > 10^10.
For n in {26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49}, a(n) > 5*10^10.
For n in {51, 52, 53, ..., 64, 65} and {67, 68, 69, ..., 73, 74}, a(n) > 10^11.
For n in {75, 76, 77} and {79, 80, 81, ..., 96, 97, 99}, a(n) > 5*10^11.
A few nonzero terms were added by math4pad.net @PascalCardin
a(1000) = 1000000000000002002017, a(10000) = 0, a(1000000) = 1000002000010, a(10000000) = 200000020000011. It looks like a(10^k) in decimal consists of mostly the digits 0, 1 and 2. - Chai Wah Wu, Dec 07 2017
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..500 (n = 1..100 from Hiroaki Yamanouchi)
John D. Cook, Monday morning math puzzle (2012)
Dean Morrow, Cycles of a family of digit functions
EXAMPLE
12 is the smallest number such that 3^1 + 3^2 = 12 so a(3) = 12.
4624 is the smallest number such that 4^4 + 4^6 + 4^2 + 4^4 = 4624 so a(4) = 4624.
1033 is the smallest number such that 8^1 + 8^0 + 8^3 + 8^3 = 1033 so a(8) = 1033.
PROG
(PARI)
Min(n)=for(k=1, 10^3, if(n+k<=10^k, return(10^k)))
Max(n)=for(k=1, 10^3, if(k*n^9<=10^k-1, return(10^(k-1))))
side(n, q)=v=digits(q); for(i=1, 10, qq=digits((floor(q/10^i)+1)*10^i); st=sum(j=1, #qq, n^qq[j]); if(q+10^i>st, return((floor(q/10^i)+1)*10^(i-1))))
a(n)=k=Min(n); while(k<=Max(n), q=10*k; d=digits(q); s=sum(i=1, #d, n^d[i]); if(q<s, k=side(n, q)); if(q>s, for(j=1, 9, dd=digits(q+j); ss=sum(m=1, #dd, n^dd[m]); if(q+j<ss, k++; break); if(q+j==ss, return(q+j))); if(q+9>ss, k++)); if(q==s, return(q))); return(0)
n=1; while(n<100, print1(a(n), ", "); n++) \\ PARI program more advanced than Python program \\ Derek Orr, Aug 01 2014
(Python)
def Min(n):
..for k in range(1, 10**3):
....if n+k <= 10**k:
......return 10**k
def Max(n):
..for k in range(1, 10**3):
....if k*(n**9) <= 10**k-1:
......return 10**(k-1)
def div10(n):
..for j in range(10**3):
....if n%10**j!=0:
......return j
def a(n):
..k = Min(n)
..while k <= Max(n):
....tot = 0
....for i in str(k):
......tot += n**(int(i))
....if tot == k:
......return k
....if tot < k:
......k += 1
....if tot > k-1:
......k = (1+k//10**div10(k))*10**div10(k)
n = 1
while n < 100:
..if a(n):
....print(a(n), end=', ')
..else:
....print(0, end=', ')
..n += 1
# Derek Orr, Aug 01 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 19 2014
EXTENSIONS
More terms and edited extensively by Derek Orr, Aug 26 2014
a(21)-a(30) from Hiroaki Yamanouchi, Sep 27 2014
STATUS
approved