The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236067 a(n) is the least number m such that m = n^d_1 + n^d_2 + ... + n^d_k where d_k represents the k-th digit in the decimal expansion of m, or 0 if no such number exists. 3
 1, 0, 12, 4624, 3909511, 0, 13177388, 1033, 10, 0, 0, 0, 0, 0, 2758053616, 1053202, 7413245658, 419370838921, 52135640, 1347536041, 833904227332, 5117557126, 3606012949057, 5398293152472, 31301, 0, 15554976231978, 405287637330, 35751665247, 19705624111111 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The 0's in the sequence are definite. There exists both a maximum and a minimum number that a(n) can be based on n. They are given in the programs below as Max(n) and Min(n), respectively. It is known that a(22) = 5117557126, a(25) = 31301, a(29) = 35751665247, a(32) = 2112, a(33) = 1224103, a(37) = 111, a(40) = 102531321, a(48) = 25236435456, a(50) = 101, a(66) = 2524232305, a(78) = 453362316342, a(98) = 100, and a(100) = 20102. There are an infinite number of nonzero entries. First, note if a(n) is nonzero, a(n) >= n. Further, a(9) = 10, a(98) = 100, a(997) = 1000, ..., a(10^k-k) = 10^k for all k >= 0. For n = 21, 23, and 24, a(n) > 10^10. For n in {26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49}, a(n) > 5*10^10. For n in {51, 52, 53, ..., 64, 65} and {67, 68, 69, ..., 73, 74}, a(n) > 10^11. For n in {75, 76, 77} and {79, 80, 81, ..., 96, 97, 99}, a(n) > 5*10^11. A few nonzero terms were added by math4pad.net @PascalCardin a(1000) = 1000000000000002002017, a(10000) = 0, a(1000000) = 1000002000010, a(10000000) = 200000020000011. It looks like a(10^k) in decimal consists of mostly the digits 0, 1 and 2. - Chai Wah Wu, Dec 07 2017 LINKS Chai Wah Wu, Table of n, a(n) for n = 1..500 (n = 1..100 from Hiroaki Yamanouchi) John D. Cook, Monday morning math puzzle (2012) Dean Morrow, Cycles of a family of digit functions EXAMPLE 12 is the smallest number such that 3^1 + 3^2 = 12 so a(3) = 12. 4624 is the smallest number such that 4^4 + 4^6 + 4^2 + 4^4 = 4624 so a(4) = 4624. 1033 is the smallest number such that 8^1 + 8^0 + 8^3 + 8^3 = 1033 so a(8) = 1033. PROG (PARI) Min(n)=for(k=1, 10^3, if(n+k<=10^k, return(10^k))) Max(n)=for(k=1, 10^3, if(k*n^9<=10^k-1, return(10^(k-1)))) side(n, q)=v=digits(q); for(i=1, 10, qq=digits((floor(q/10^i)+1)*10^i); st=sum(j=1, #qq, n^qq[j]); if(q+10^i>st, return((floor(q/10^i)+1)*10^(i-1)))) a(n)=k=Min(n); while(k<=Max(n), q=10*k; d=digits(q); s=sum(i=1, #d, n^d[i]); if(qs, for(j=1, 9, dd=digits(q+j); ss=sum(m=1, #dd, n^dd[m]); if(q+jss, k++)); if(q==s, return(q))); return(0) n=1; while(n<100, print1(a(n), ", "); n++) \\ PARI program more advanced than Python program \\ Derek Orr, Aug 01 2014 (Python) def Min(n): ..for k in range(1, 10**3): ....if n+k <= 10**k: ......return 10**k def Max(n): ..for k in range(1, 10**3): ....if k*(n**9) <= 10**k-1: ......return 10**(k-1) def div10(n): ..for j in range(10**3): ....if n%10**j!=0: ......return j def a(n): ..k = Min(n) ..while k <= Max(n): ....tot = 0 ....for i in str(k): ......tot += n**(int(i)) ....if tot == k: ......return k ....if tot < k: ......k += 1 ....if tot > k-1: ......k = (1+k//10**div10(k))*10**div10(k) n = 1 while n < 100: ..if a(n): ....print(a(n), end=', ') ..else: ....print(0, end=', ') ..n += 1 # Derek Orr, Aug 01 2014 CROSSREFS Cf. A139410 (for 4th term), A003321, A296138, A296139. Sequence in context: A361106 A009094 A061701 * A134821 A229669 A013508 Adjacent sequences: A236064 A236065 A236066 * A236068 A236069 A236070 KEYWORD nonn,base AUTHOR Derek Orr, Jan 19 2014 EXTENSIONS More terms and edited extensively by Derek Orr, Aug 26 2014 a(21)-a(30) from Hiroaki Yamanouchi, Sep 27 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 07:28 EDT 2024. Contains 372760 sequences. (Running on oeis4.)