login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236067
a(n) is the least number m such that m = n^d_1 + n^d_2 + ... + n^d_k where d_k represents the k-th digit in the decimal expansion of m, or 0 if no such number exists.
3
1, 0, 12, 4624, 3909511, 0, 13177388, 1033, 10, 0, 0, 0, 0, 0, 2758053616, 1053202, 7413245658, 419370838921, 52135640, 1347536041, 833904227332, 5117557126, 3606012949057, 5398293152472, 31301, 0, 15554976231978, 405287637330, 35751665247, 19705624111111
OFFSET
1,3
COMMENTS
The 0's in the sequence are definite. There exists both a maximum and a minimum number that a(n) can be based on n. They are given in the programs below as Max(n) and Min(n), respectively.
It is known that a(22) = 5117557126, a(25) = 31301, a(29) = 35751665247, a(32) = 2112, a(33) = 1224103, a(37) = 111, a(40) = 102531321, a(48) = 25236435456, a(50) = 101, a(66) = 2524232305, a(78) = 453362316342, a(98) = 100, and a(100) = 20102.
There are an infinite number of nonzero entries. First, note if a(n) is nonzero, a(n) >= n. Further, a(9) = 10, a(98) = 100, a(997) = 1000, ..., a(10^k-k) = 10^k for all k >= 0.
For n = 21, 23, and 24, a(n) > 10^10.
For n in {26, 27, 28, 30, 31, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49}, a(n) > 5*10^10.
For n in {51, 52, 53, ..., 64, 65} and {67, 68, 69, ..., 73, 74}, a(n) > 10^11.
For n in {75, 76, 77} and {79, 80, 81, ..., 96, 97, 99}, a(n) > 5*10^11.
A few nonzero terms were added by math4pad.net @PascalCardin
a(1000) = 1000000000000002002017, a(10000) = 0, a(1000000) = 1000002000010, a(10000000) = 200000020000011. It looks like a(10^k) in decimal consists of mostly the digits 0, 1 and 2. - Chai Wah Wu, Dec 07 2017
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..500 (n = 1..100 from Hiroaki Yamanouchi)
John D. Cook, Monday morning math puzzle (2012)
EXAMPLE
12 is the smallest number such that 3^1 + 3^2 = 12 so a(3) = 12.
4624 is the smallest number such that 4^4 + 4^6 + 4^2 + 4^4 = 4624 so a(4) = 4624.
1033 is the smallest number such that 8^1 + 8^0 + 8^3 + 8^3 = 1033 so a(8) = 1033.
PROG
(PARI)
Min(n)=for(k=1, 10^3, if(n+k<=10^k, return(10^k)))
Max(n)=for(k=1, 10^3, if(k*n^9<=10^k-1, return(10^(k-1))))
side(n, q)=v=digits(q); for(i=1, 10, qq=digits((floor(q/10^i)+1)*10^i); st=sum(j=1, #qq, n^qq[j]); if(q+10^i>st, return((floor(q/10^i)+1)*10^(i-1))))
a(n)=k=Min(n); while(k<=Max(n), q=10*k; d=digits(q); s=sum(i=1, #d, n^d[i]); if(q<s, k=side(n, q)); if(q>s, for(j=1, 9, dd=digits(q+j); ss=sum(m=1, #dd, n^dd[m]); if(q+j<ss, k++; break); if(q+j==ss, return(q+j))); if(q+9>ss, k++)); if(q==s, return(q))); return(0)
n=1; while(n<100, print1(a(n), ", "); n++) \\ PARI program more advanced than Python program \\ Derek Orr, Aug 01 2014
(Python)
def Min(n):
..for k in range(1, 10**3):
....if n+k <= 10**k:
......return 10**k
def Max(n):
..for k in range(1, 10**3):
....if k*(n**9) <= 10**k-1:
......return 10**(k-1)
def div10(n):
..for j in range(10**3):
....if n%10**j!=0:
......return j
def a(n):
..k = Min(n)
..while k <= Max(n):
....tot = 0
....for i in str(k):
......tot += n**(int(i))
....if tot == k:
......return k
....if tot < k:
......k += 1
....if tot > k-1:
......k = (1+k//10**div10(k))*10**div10(k)
n = 1
while n < 100:
..if a(n):
....print(a(n), end=', ')
..else:
....print(0, end=', ')
..n += 1
# Derek Orr, Aug 01 2014
CROSSREFS
Cf. A139410 (for 4th term), A003321, A296138, A296139.
Sequence in context: A361106 A009094 A061701 * A134821 A229669 A013508
KEYWORD
nonn,base
AUTHOR
Derek Orr, Jan 19 2014
EXTENSIONS
More terms and edited extensively by Derek Orr, Aug 26 2014
a(21)-a(30) from Hiroaki Yamanouchi, Sep 27 2014
STATUS
approved