login
A236072
Numbers n such that n^4 + n + 1 and n^4 - n - 1 are prime.
2
2, 5, 6, 9, 11, 26, 44, 60, 77, 147, 239, 384, 545, 690, 770, 779, 1071, 1127, 1190, 1271, 1296, 1331, 1506, 1659, 1707, 1871, 1880, 1986, 2037, 2442, 2520, 2541, 2714, 2960, 2982, 3045, 3060, 3110, 3189, 3287, 3464, 3609
OFFSET
1,1
LINKS
EXAMPLE
384^4 + 384 + 1 and 384^4 - 384 - 1 are both prime, so 384 is a member of this sequence.
MATHEMATICA
Select[Range[4000], AllTrue[#^4+{#+1, -#-1}, PrimeQ]&] (* Harvey P. Dale, Jan 20 2025 *)
PROG
(Python)
import sympy
from sympy import isprime
{print(p) for p in range(10**4) if isprime(p**4-p-1) and isprime(p**4+p+1)}
(PARI)
s=[]; for(n=1, 4000, if(isprime(n^4+n+1) && isprime(n^4-n-1), s=concat(s, n))); s \\ Colin Barker, Jan 19 2014
CROSSREFS
Numbers in both A126424 and A049408.
Sequence in context: A286341 A284657 A230506 * A055938 A190764 A276886
KEYWORD
nonn
AUTHOR
Derek Orr, Jan 19 2014
STATUS
approved