OFFSET
1,29
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 116.
(ii) For any integer n > 196, there is a positive integer k < n such that p = phi(k) + phi(n-k)/6 + 1, prime(2*p) - 2*prime(p) and prime(p-1) - 2*prime((p-1)/2) are all prime.
Clearly, part (i) (or part (ii)) implies that there are infinitely many odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) (or prime(p-1) - 2*prime((p-1)/2), resp.) both prime.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
EXAMPLE
a(30) = 1 since phi(4) + phi(26)/6 + 1 = 5, prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are all prime.
a(204) = 1 since phi(159) + phi(45)/6 + 1 = 109, prime(2*109) - 2*prime(109) = 1361 - 2*599 = 163, and prime(109) - 2*prime((109-1)/2) = 599 - 2*251 = 97 are all prime.
MATHEMATICA
PQ[n_]:=PQ[n]=n>0&&PrimeQ[n]
p[n_]:=PQ[n]&&PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]]
f[n_, k_]:=EulerPhi[k]+EulerPhi[n-k]/6+1
a[n_]:=Sum[If[p[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 19 2014
STATUS
approved