login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049676
a(n) = (F(8*n+3) + F(8*n+1))/3, where F = A000045 (the Fibonacci sequence).
2
1, 41, 1926, 90481, 4250681, 199691526, 9381251041, 440719107401, 20704416796806, 972666870342481, 45694638489299801, 2146675342126748166, 100848046441467864001, 4737711507406862859881, 222571592801681086550406, 10456127150171604205009201
OFFSET
0,2
FORMULA
From Philippe Deléham, Nov 18 2008: (Start)
a(n) = 47*a(n-1) - a(n-2), a(0)=1, a(1)=41.
G.f.: (1-6*x)/(1-47*x+x^2). (End)
EXAMPLE
a(2) = (F(8 * 2 + 3) + F(8 * 2 + 1)) / 3 = (F(19) + F(17)) / 3 = (4181 + 1597) / 3 = 5778 / 3 = 1926. - Indranil Ghosh, Feb 04 2017
MATHEMATICA
Table[(Fibonacci[8*n + 3] + Fibonacci[8*n + 1])/3, {n, 0, 20}] (* Wesley Ivan Hurt, Feb 04 2017 *)
LinearRecurrence[{47, -1}, {1, 41}, 30] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) for(n=0, 30, print1((fibonacci(8*n + 3) + fibonacci(8*n + 1))/3, ", ")) \\ G. C. Greubel, Dec 02 2017
(Magma) [(Fibonacci(8*n + 3) + Fibonacci(8*n + 1))/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Cf. A000045.
Sequence in context: A147521 A233070 A267267 * A275501 A275398 A275263
KEYWORD
nonn,easy
EXTENSIONS
More terms from Indranil Ghosh, Feb 04 2017
STATUS
approved