login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049676 a(n) = (F(8*n+3) + F(8*n+1))/3, where F = A000045 (the Fibonacci sequence). 2
1, 41, 1926, 90481, 4250681, 199691526, 9381251041, 440719107401, 20704416796806, 972666870342481, 45694638489299801, 2146675342126748166, 100848046441467864001, 4737711507406862859881, 222571592801681086550406, 10456127150171604205009201 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Indranil Ghosh, Table of n, a(n) for n = 0..596

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (47,-1).

FORMULA

From Philippe Deléham, Nov 18 2008: (Start)

a(n) = 47*a(n-1) - a(n-2), a(0)=1, a(1)=41.

G.f.: (1-6*x)/(1-47*x+x^2). (End)

EXAMPLE

a(2) = (F(8 * 2 + 3) + F(8 * 2 + 1)) / 3 = (F(19) + F(17)) / 3 = (4181 + 1597) / 3 = 5778 / 3 = 1926. - Indranil Ghosh, Feb 04 2017

MATHEMATICA

Table[(Fibonacci[8*n + 3] + Fibonacci[8*n + 1])/3, {n, 0, 20}] (* Wesley Ivan Hurt, Feb 04 2017 *)

LinearRecurrence[{47, -1}, {1, 41}, 30] (* G. C. Greubel, Dec 02 2017 *)

PROG

(PARI) for(n=0, 30, print1((fibonacci(8*n + 3) + fibonacci(8*n + 1))/3, ", ")) \\ G. C. Greubel, Dec 02 2017

(MAGMA) [(Fibonacci(8*n + 3) + Fibonacci(8*n + 1))/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017

CROSSREFS

Sequence in context: A147521 A233070 A267267 * A275501 A275398 A275263

Adjacent sequences:  A049673 A049674 A049675 * A049677 A049678 A049679

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Indranil Ghosh, Feb 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 22 19:35 EDT 2018. Contains 312918 sequences. (Running on oeis4.)