OFFSET
0,5
COMMENTS
Every integer-valued quotient of two Fibonacci numbers is in this array. - Clark Kimberling, Aug 28 2008
Not only does 5 divide row 5, but 50 divides (-5 + row 5), as in A214984. - Clark Kimberling, Nov 02 2012
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 142.
LINKS
Clark Kimberling, Table of n, a(n) for n = 0..1829
I. Strazdins, Lucas factors and a Fibonomial generating function, in Applications of Fibonacci numbers, Vol. 7 (Graz, 1996), 401-404, Kluwer Acad. Publ., Dordrecht, 1998.
FORMULA
T(n, m) = Sum_{i_1>=0} Sum_{i_2>=0} ... Sum_{i_m>=0} C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m).
G.f. for column m >= 1: 1/(1 - Lucas(m)*x + (-1)^m*x^2), where Lucas(m) = A000204(m). - Paul D. Hanna, Jan 28 2012
EXAMPLE
1 1 1 1 1 1
1 3 4 7 11 18
2 8 17 48 122 323
3 21 72 329 1353 5796
5 55 305 2255 15005 104005
8 144 1292 15456 166408 1866294
13 377 5473 105937 1845493 33489287
...
MATHEMATICA
max = 11; col[m_] := CoefficientList[ Series[ 1/(1 - LucasL[m]*x + (-1)^m*x^2), {x, 0, max}], x]; t = Transpose[ Table[ col[m], {m, 1, max}]] ; Flatten[ Table[ t[[n - m + 1, m]], {n, 1, max }, {m, n, 1, -1}]] (* Jean-François Alcover, Feb 21 2012, after Paul D. Hanna *)
f[n_] := Fibonacci[n]; t[m_, n_] := f[m*n]/f[n]
TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] (* array *)
t = Flatten[Table[t[k, n + 1 - k], {n, 1, 120}, {k, 1, n}]] (* sequence *) (* Clark Kimberling, Nov 02 2012 *)
PROG
(PARI) {T(n, m)=polcoeff(1/(1 - Lucas(m)*x + (-1)^m*x^2 +x*O(x^n)), n)}
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Erich Friedman, Jun 03 2001
Edited by Ralf Stephan, Feb 03 2005
Better description from Clark Kimberling, Aug 28 2008
STATUS
approved