login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A028412
Rectangular array of numbers Fibonacci(m(n+1))/Fibonacci(m), m >= 1, n >= 0, read by downward antidiagonals.
20
1, 1, 1, 1, 3, 2, 1, 4, 8, 3, 1, 7, 17, 21, 5, 1, 11, 48, 72, 55, 8, 1, 18, 122, 329, 305, 144, 13, 1, 29, 323, 1353, 2255, 1292, 377, 21, 1, 47, 842, 5796, 15005, 15456, 5473, 987, 34, 1, 76, 2208, 24447, 104005, 166408, 105937, 23184, 2584, 55, 1, 123, 5777
OFFSET
0,5
COMMENTS
Every integer-valued quotient of two Fibonacci numbers is in this array. - Clark Kimberling, Aug 28 2008
Not only does 5 divide row 5, but 50 divides (-5 + row 5), as in A214984. - Clark Kimberling, Nov 02 2012
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 142.
LINKS
I. Strazdins, Lucas factors and a Fibonomial generating function, in Applications of Fibonacci numbers, Vol. 7 (Graz, 1996), 401-404, Kluwer Acad. Publ., Dordrecht, 1998.
FORMULA
T(n, m) = Sum_{i_1>=0} Sum_{i_2>=0} ... Sum_{i_m>=0} C(n-i_m, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{m-1}, i_m).
G.f. for column m >= 1: 1/(1 - Lucas(m)*x + (-1)^m*x^2), where Lucas(m) = A000204(m). - Paul D. Hanna, Jan 28 2012
EXAMPLE
1 1 1 1 1 1
1 3 4 7 11 18
2 8 17 48 122 323
3 21 72 329 1353 5796
5 55 305 2255 15005 104005
8 144 1292 15456 166408 1866294
13 377 5473 105937 1845493 33489287
...
MATHEMATICA
max = 11; col[m_] := CoefficientList[ Series[ 1/(1 - LucasL[m]*x + (-1)^m*x^2), {x, 0, max}], x]; t = Transpose[ Table[ col[m], {m, 1, max}]] ; Flatten[ Table[ t[[n - m + 1, m]], {n, 1, max }, {m, n, 1, -1}]] (* Jean-François Alcover, Feb 21 2012, after Paul D. Hanna *)
f[n_] := Fibonacci[n]; t[m_, n_] := f[m*n]/f[n]
TableForm[Table[t[m, n], {m, 1, 10}, {n, 1, 10}]] (* array *)
t = Flatten[Table[t[k, n + 1 - k], {n, 1, 120}, {k, 1, n}]] (* sequence *) (* Clark Kimberling, Nov 02 2012 *)
PROG
(PARI) {T(n, m)=polcoeff(1/(1 - Lucas(m)*x + (-1)^m*x^2 +x*O(x^n)), n)}
CROSSREFS
Rows include (essentially) A000032, A047946, A083564, A103226.
Main diagonal is A051294.
Transpose is A214978.
Sequence in context: A092486 A159966 A119263 * A156699 A245183 A262347
KEYWORD
nonn,tabl,easy,nice
EXTENSIONS
More terms from Erich Friedman, Jun 03 2001
Edited by Ralf Stephan, Feb 03 2005
Better description from Clark Kimberling, Aug 28 2008
STATUS
approved