login
A262347
Number of subsets of [1..n] of maximal size that are free of 3-term arithmetic progressions.
3
1, 1, 1, 3, 2, 1, 4, 10, 25, 4, 24, 7, 25, 6, 1, 4, 14, 43, 97, 220, 2, 18, 62, 232, 2, 33, 2, 12, 36, 106, 1, 11, 2, 4, 14, 40, 2, 4, 86, 307, 20, 1, 4, 14, 41, 99, 266, 674, 1505, 3510, 7726, 14, 50, 156, 2, 8, 26, 56, 2, 4, 6, 14, 48, 2, 4, 8, 16, 28, 108, 319, 1046, 4, 26, 82, 1, 2
OFFSET
0,4
COMMENTS
The sequence A003002 gives the size of the largest subset of the integers up to n that avoids three-term arithmetic progressions. This sequence gives the number of distinct subsets of [1..n] that have that size and are free of three-term arithmetic progressions.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..140
Fausto A. C. Cariboni, All sets that yield a(n) for n = 4..130., Feb 19 2018.
Janusz Dybizbanski, Sequences containing no 3-term arithmetic progressions, The Electronic Journal of Combinatorics, 19, no. 2 (2012).
EXAMPLE
The largest subset of [1,6] that doesn't have any 3 terms in arithmetic progression has size 4. There are 4 such subsets with this property: {1,2,4,5}, {1,2,5,6}, {1,3,4,6} and {2,3,5,6}, so a(6)=4.
MAPLE
G:= proc(n, cons, t)
option remember;
local consn, consr;
if n < t or member({}, cons) then return {} fi;
if t = 0 then return {{}} fi;
consn, consr:= selectremove(has, cons, n);
consn:= subs(n=NULL, consn);
procname(n-1, consr, t) union
map(`union`, procname(n-1, consr union consn, t-1), {n});
end proc:
F:= proc(n)
local m, cons, R;
m:= A003002(n-1);
cons:= {seq(seq({i, i+j, i+2*j}, i=1..n-2*j), j=1..(n-1)/2)};
R:= G(n, cons, m+1);
if R = {} then
A003002(n):= m;
G(n, cons, m);
else
A003002(n):= m+1;
R
fi
end proc:
A003002(1):= 1:
a[1]:= 1:
for n from 2 to 40 do
a[n]:= nops(F(n))
od:
seq(a[i], i=1..40); # Robert Israel, Sep 20 2015
MATHEMATICA
A003002 = Cases[Import["https://oeis.org/A003002/b003002.txt", "Table"], {_, _}][[All, 2]];
a[n_] := a[n] = Count[Subsets[Range[n], {A003002[[n+1]]}], s_ /; !MatchQ[s, {___, n1_, ___, n2_, ___, n3_, ___} /; n2 - n1 == n3 - n2]];
Table[Print[n, " ", a[n]]; a[n], {n, 0, 25}] (* Jean-François Alcover, May 30 2020 *)
CROSSREFS
Last elements of rows of A334187.
Sequence in context: A028412 A156699 A245183 * A182236 A077819 A030313
KEYWORD
nonn
AUTHOR
Nathan McNew, Sep 18 2015
EXTENSIONS
a(25) to a(44) from Robert Israel, Sep 20 2015
a(45) to a(75) from Fausto A. C. Cariboni, Jan 15 2018
a(0)=1 prepended by Alois P. Heinz, May 16 2020
STATUS
approved