login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262349
Sum of the divisors of the n-th Bell number.
2
1, 1, 3, 6, 24, 98, 240, 878, 13104, 34560, 143840, 1628640, 4421376, 27644438, 291751956, 1666163520, 10523628456, 216625138884, 779556556800, 5873176163328, 107021765366544, 633207380826720, 6399554302310400, 66975753492138600, 594616643557427040
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Number
Eric Weisstein's World of Mathematics, Divisor Function
FORMULA
a(n) = sigma_1(A000110(n)) = A000203(A000110(n)).
a(n) = sigma_1(1/e*Sum_{k >=0} k^n/(k!)).
MATHEMATICA
Table[DivisorSigma[1, BellB[n]], {n, 0, 22}]
PROG
(Magma) [DivisorSigma(1, Bell(n)): n in [0..30]]; // Vincenzo Librandi, Sep 19 2015
(PARI) a000110(n) = n! * polcoeff( exp( exp( x + x * O(x^n)) - 1), n);
vector(30, n, sigma(a000110(n-1))) \\ Altug Alkan, Sep 26 2015
(PARI) a000110(n) = round(exp(-1)*suminf(k=0, 1.0*k^n/k!));
vector(30, n, sigma(a000110(n-1))) \\ Altug Alkan, Oct 04 2015
CROSSREFS
Sequence in context: A296215 A152761 A295761 * A109155 A338112 A294381
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Sep 18 2015
EXTENSIONS
More terms from Vincenzo Librandi, Sep 19 2015
STATUS
approved