OFFSET
1,2
COMMENTS
"Sequences containing no 3-term arithmetic progressions" is another phrase people may be searching for. See also A003002.
Don Reble notes large gaps between a(4k) and a(4k+1).
Ed Pegg Jr conjectures the 2^k term always equals (3^k+1)/2 and calls these "unprogressive" sets. Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Nov 04 2003, remarks that this conjecture is known to be false.
Further comments from Jaroslaw Wroblewski (jwr(AT)math.uni.wroc.pl), Nov 05 2003: log a(n) / log n tends to 1 was established in 1946 by Behrend. This was extended by me in the Math. Comp. paper. Using appropriately chosen intervals from B(4,9,4) and B(6,9,11) I have determined that log (2a(n)-1) / log n < log 3 / log 2 holds for n=60974 and for n=2^19 since a(60974) <= 19197041, a(524288) <= 515749566. See my web page for further bounds.
Bloom & Sisask prove that a(n) >> n (log n)^(1+c) for an absolute (small) constant c > 0. This improves the o(1) in Behrend's result that log a(n)/log n = 1 + o(1) to log log n/log n. - Charles R Greathouse IV, Aug 04 2020
REFERENCES
Donald E. Knuth, Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 135 and 190, Problem 31.
C. R. J. Singleton, "No Progress": Solution to Problem 2472, Journal of Recreational Mathematics, 30(4) 305 1999-2000.
LINKS
Tanbir Ahmed, Janusz Dybizbanski and Hunter Snevily, Unique Sequences Containing No k-Term Arithmetic Progressions, Electronic Journal of Combinatorics, 20(4), 2013, #P29.
Cyriac Antony, Laavanya D., and Devi Yamini S, Graceful coloring is computationally hard, arXiv:2407.02179 [math.CO], 2024. See pp. 1, 2.
F. Behrend, On sets of integers which contain no three terms in an arithmetic progression, Proc. Nat. Acad. Sci. USA, v. 32, 1946, pp. 331-332.
Thomas F. Bloom and Olof Sisask, Breaking the logarithmic barrier in Roth's theorem on arithmetic progressions, arXiv:2007.03528 [math.NT], 2020.
Janusz Dybizbanski, Sequences containing no 3-term arithmetic progressions, The Electronic Journal of Combinatorics, 19, no. 2 (2012), #P15.
Erica Klarreich, Landmark Math Proof Clears Hurdle in Top Erdős Conjecture, Quanta Magazine, Aug 03 2020.
Tom Sanders, On Roth's theorem on progressions, Annals of Mathematics 174:1 (2011), pp. 619-636; arXiv version, arXiv:1011.0104 [math.CA], 2010-2011.
Samuel S. Wagstaff, Jr., On k-free sequences of integers, Math. Comp., 26 (1972), 767-771.
Wikipedia, Salem-Spencer set
J. Wroblewski, A Nonaveraging Set of Integers with a Large Sum of Reciprocals, Math. Comput. 43, 261-262, 1984.
J. Wroblewski, Nonaveraging Sets
EXAMPLE
a(9) = 20 = 1 2 6 7 9 14 15 18 20
a(10) = 24 = 1 2 5 7 11 16 18 19 23 24
a(11) = 26 = 1 2 5 7 11 16 18 19 23 24 26
a(12) = 30 = 1 3 4 8 9 11 20 22 23 27 28 30 (unique)
a(13) = 32 = 1 2 4 8 9 11 19 22 23 26 28 31 32
a(14) = 36 = 1 2 4 8 9 13 21 23 26 27 30 32 35 36
a(15) = 40 = 1 2 4 5 10 11 13 14 28 29 31 32 37 38 40
a(16) = 41 = 1 2 4 5 10 11 13 14 28 29 31 32 37 38 40 41
a(17) = 51 = 1 2 4 5 10 13 14 17 31 35 37 38 40 46 47 50 51
a(18) = 54 = 1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54
a(19) = 58 = 1 2 5 6 12 14 15 17 21 31 38 39 42 43 49 51 52 54 58
a(20) = 63 = 1 2 5 7 11 16 18 19 24 26 38 39 42 44 48 53 55 56 61 63
a(21) = 71 = 1 2 5 7 10 17 20 22 26 31 41 46 48 49 53 54 63 64 68 69 71
a(22) = 74 = 1 2 7 9 10 14 20 22 23 25 29 46 50 52 53 55 61 65 66 68 73 74
a(23) = 82 = 1 2 4 8 9 11 19 22 23 26 28 31 49 57 59 62 63 66 68 71 78 81 82
a(24) = 84 = 1 3 4 8 9 16 18 21 22 25 30 37 48 55 60 63 64 67 69 76 77 81 82 84
a(25) = 92 = 1 2 6 8 9 13 19 21 22 27 28 39 58 62 64 67 68 71 73 81 83 86 87 90 92
a(26) = 95 = 1 2 4 5 10 11 22 23 25 26 31 32 55 56 64 65 67 68 76 77 82 83 91 92 94 95
a(27) = 100 = 1 3 6 7 10 12 20 22 25 26 29 31 35 62 66 68 71 72 75 77 85 87 90 91 94 96 100
MATHEMATICA
ThreeAPFree[n_, k_, a_] := Module[{d, j},
For[d = 1, d < k/2, d ++,
For[j = 1, j <= n - 2, j++,
If[MemberQ[a, a[[j]] + d] && MemberQ[a, a[[j]] + 2 d],
Return[False]]]];
Return[True]];
A065825[n_] := Module[{k, x, a},
k = n;
While[True,
x = Subsets[Range[k], {n}];
For[i = 1, i <= Length[x], i++,
a = x[[i]];
If[a[[1]] != 1 || a[[n]] != k, Continue[]];
If[ThreeAPFree[n, k, a], Return[k]]];
k++]]
Table[A065825[n], {n, 1, 10}] (* Robert Price, Mar 11 2019 *)
PROG
(PARI) \\ brute force
has3AP(v)=for(i=1, #v-2, for(j=i+2, #v, my(t=(v[i]+v[j])/2); if(denominator(t)==1 && setsearch(v, t), return([v[i], t, v[j]])))); 0
a(n)=for(k=n, oo, forvec(u=vector(n, i, if(i==1, [1, 1], i==k, [k, k], [2, k-1])), if(has3AP(u)==0, /* print(u); */ return(u[n])), 2)) \\ Charles R Greathouse IV, Aug 04 2020
CROSSREFS
KEYWORD
nonn,hard,nice,more
AUTHOR
Ed Pegg Jr, Nov 23 2001
EXTENSIONS
a(19) found by Guenter Stertenbrink in response to an A003278-based puzzle on www.mathpuzzle.com
More terms from Don Reble, Nov 25 2001
a(28)-a(32) from William Rex Marshall, Mar 24 2002
a(33) from William Rex Marshall, Nov 15 2003
a(34) from William Rex Marshall, Jan 24 2004
a(35)-a(36) (found by Gavin Theobold in 2004) communicated by William Rex Marshall, Mar 10 2007
a(37)-a(41) (from Wroblewski's web page) added by Joerg Arndt, Apr 25 2012
a(42)-a(43) from Fausto A. C. Cariboni, Sep 02 2018
STATUS
approved