login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049664
a(n) = (F(6*n+3) - 2)/32, where F = A000045 (the Fibonacci sequence).
9
0, 1, 19, 342, 6138, 110143, 1976437, 35465724, 636406596, 11419853005, 204920947495, 3677157201906, 65983908686814, 1184033199160747, 21246613676206633, 381255012972558648, 6841343619829849032, 122762930143964723929, 2202891398971535181691
OFFSET
0,3
COMMENTS
Partial sums of Chebyshev polynomials S(n,18).
FORMULA
G.f.: x/(1-19*x+19*x^2-x^3) = x/((1-x)*(1-18*x+x^2)).
a(n+1) = Sum_{k=0..n} S(k, 18), with n>=0, S(k, 18) = U(k, 9) = A049660(k+1).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=19.
a(n) = 18*a(n-1) - a(n-2) + 1, n>=2, a(0)=0, a(1)=1.
a(n+1) = (S(n+1, 18) - S(n, 18) - 1)/16, n>=0.
a(n) = (1/8)*Sum_{k=0..n} Fibonacci(6*k). - Gary Detlefs, Dec 07 2010
Product_{n>=2} (1 - 1/a(n)) = phi^6/19 = (4*sqrt(5)+9)/19, where phi is the golden ratio (A001622). - Amiram Eldar, Nov 28 2024
MATHEMATICA
LinearRecurrence[{19, -19, 1}, {0, 1, 19}, 50] (* or *) Table[(Fibonacci[ 6*n +3] - 2)/32, {n, 0, 30}] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) a(n)=fibonacci(6*n+3)\32 \\ Charles R Greathouse IV, Oct 07 2016
(Magma) [(Fibonacc9(6*n+3)-2)/32: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
Sequence in context: A142549 A049629 A162805 * A163110 A163453 A163968
KEYWORD
nonn,easy
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Aug 31 2004
STATUS
approved