login
A049664
a(n) = (F(6*n+3) - 2)/32, where F=A000045 (the Fibonacci sequence).
9
0, 1, 19, 342, 6138, 110143, 1976437, 35465724, 636406596, 11419853005, 204920947495, 3677157201906, 65983908686814, 1184033199160747, 21246613676206633, 381255012972558648, 6841343619829849032, 122762930143964723929, 2202891398971535181691
OFFSET
0,3
COMMENTS
Partial sums of Chebyshev polynomials S(n,18).
FORMULA
G.f.: x/(1-19*x+19*x^2-x^3) = x/((1-x)*(1-18*x+x^2)).
a(n+1) = Sum_{k=0..n} S(k, 18), with n>=0, S(k, 18) = U(k, 9) = A049660(k+1).
a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=19.
a(n) = 18*a(n-1) - a(n-2) + 1, n>=2, a(0)=0, a(1)=1.
a(n+1) = (S(n+1, 18) - S(n, 18) - 1)/16, n>=0.
a(n) = (1/8)*Sum_{k=0..n} Fibonacci(6*k). - Gary Detlefs, Dec 07 2010
MATHEMATICA
LinearRecurrence[{19, -19, 1}, {0, 1, 19}, 50] (* or *) Table[(Fibonacci[ 6*n +3] - 2)/32, {n, 0, 30}] (* G. C. Greubel, Dec 02 2017 *)
PROG
(PARI) a(n)=fibonacci(6*n+3)\32 \\ Charles R Greathouse IV, Oct 07 2016
(Magma) [(Fibonacc9(6*n+3)-2)/32: n in [0..30]]; // G. C. Greubel, Dec 02 2017
CROSSREFS
Cf. A053606.
Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).
Sequence in context: A142549 A049629 A162805 * A163110 A163453 A163968
KEYWORD
nonn,easy
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Aug 31 2004
STATUS
approved