login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (F(6*n+3) - 2)/32, where F = A000045 (the Fibonacci sequence).
9

%I #37 Nov 28 2024 14:17:16

%S 0,1,19,342,6138,110143,1976437,35465724,636406596,11419853005,

%T 204920947495,3677157201906,65983908686814,1184033199160747,

%U 21246613676206633,381255012972558648,6841343619829849032,122762930143964723929,2202891398971535181691

%N a(n) = (F(6*n+3) - 2)/32, where F = A000045 (the Fibonacci sequence).

%C Partial sums of Chebyshev polynomials S(n,18).

%H G. C. Greubel, <a href="/A049664/b049664.txt">Table of n, a(n) for n = 0..750</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (19,-19,1).

%F G.f.: x/(1-19*x+19*x^2-x^3) = x/((1-x)*(1-18*x+x^2)).

%F a(n+1) = Sum_{k=0..n} S(k, 18), with n>=0, S(k, 18) = U(k, 9) = A049660(k+1).

%F a(n) = 19*a(n-1) - 19*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=19.

%F a(n) = 18*a(n-1) - a(n-2) + 1, n>=2, a(0)=0, a(1)=1.

%F a(n+1) = (S(n+1, 18) - S(n, 18) - 1)/16, n>=0.

%F a(n) = (1/8)*Sum_{k=0..n} Fibonacci(6*k). - _Gary Detlefs_, Dec 07 2010

%F Product_{n>=2} (1 - 1/a(n)) = phi^6/19 = (4*sqrt(5)+9)/19, where phi is the golden ratio (A001622). - _Amiram Eldar_, Nov 28 2024

%t LinearRecurrence[{19, -19, 1}, {0, 1, 19}, 50] (* or *) Table[(Fibonacci[ 6*n +3] - 2)/32, {n,0,30}] (* _G. C. Greubel_, Dec 02 2017 *)

%o (PARI) a(n)=fibonacci(6*n+3)\32 \\ _Charles R Greathouse IV_, Oct 07 2016

%o (Magma) [(Fibonacc9(6*n+3)-2)/32: n in [0..30]]; // _G. C. Greubel_, Dec 02 2017

%Y Cf. A000045, A001622, A049660, A053606.

%Y Cf. A212336 for more sequences with g.f. of the type 1/(1-k*x+k*x^2-x^3).

%K nonn,easy

%O 0,3

%A _Clark Kimberling_

%E Chebyshev comments from _Wolfdieter Lang_, Aug 31 2004