Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Feb 24 2023 02:31:35
%S 1,21,715,29393,1337220,64822395,3282060210,171529806825,
%T 9183676536076,501121108325684,27767032438524099,1558142747453650631,
%U 88366931393503350700,5056959295818949067010,291650059796498346544020,16934386878595523443214745,989130828878080326811887228,58078935727891217125276922940,3426228463922436748774829232156,202972497563788492865321721683556
%N Catalan trisection: A000108(3*n + 2)/2, n>=0.
%C See the comment under A187357 for the o.g.f.s of the general trisection of a sequence.
%C The sequence C(3*n+2) starts as 2, 42, 1430, 58786, 2674440, 129644790, 6564120420, 343059613650, ...
%F a(n) = C(3*n+2)/2, n>=0, with C(n) = A000108(n).
%F O.g.f.: (3 - sqrt(1 - 4*x^(1/3)) - sqrt(2)*sqrt(sqrt(1 + 4*x^(1/3) + 16*x^(2/3)) +
%F (1 + 2*x^(1/3))))/(12*x).
%F From _Ilya Gutkovskiy_, Jan 21 2017: (Start)
%F E.g.f.: 3F3(5/6,7/6,3/2; 4/3,5/3,2; 64*x).
%F a(n) ~ 8^(2*n+1)/(3*sqrt(3*Pi)*n^(3/2)). (End)
%F Sum_{n>=0} a(n)/4^n = 1 - sqrt(3+2*sqrt(3))/3. - _Amiram Eldar_, Mar 16 2022
%F a(n) = (1/2)*Product_{1 <= i <= j <= 3*n+1} (3*i + j + 2)/(3*i + j - 1). - _Peter Bala_, Feb 22 2023
%t Table[CatalanNumber[3*n+2]/2, {n, 0, 20}] (* _Amiram Eldar_, Mar 16 2022 *)
%Y Cf. A000108, A024492, A048990, A187357 (C(3*n)), A187358 (C(3*n+1)).
%K nonn,easy
%O 0,2
%A _Wolfdieter Lang_, Mar 09 2011