login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024492 Catalan numbers with odd index: a(n) = binomial(4*n+2,2*n+1)/(2*n+2). 16
1, 5, 42, 429, 4862, 58786, 742900, 9694845, 129644790, 1767263190, 24466267020, 343059613650, 4861946401452, 69533550916004, 1002242216651368, 14544636039226909, 212336130412243110, 3116285494907301262 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) and Catalan(n) have the same 2-adic valuation (equal to 1 less than the sum of the digits in the binary representation of (n + 1)). In particular, a(n) is odd iff n is of the form 2^m - 1. - Peter Bala, Aug 02 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

FORMULA

G.f.: A(x) = 1/2*x^-1*(1-sqrt(1/2*(1+sqrt(1-16*x)))).

G.f.: 3F2([3/4, 1, 5/4], [3/2, 2], 16*x). - Olivier Gérard, Feb 16 2011

a(n) = 4^n*binomial(2n+1/2, n)/(n+1). - Paul Barry, May 10 2005

a(n) = C(4n+1,2n+1)/(n+1). - Paul Barry, Nov 09 2006

a(n) = (1/(2*Pi)*integral(x=-2..2, (2+x)^(2*n)*sqrt((2-x)*(2+x))). - Peter Luschny, Sep 12 2011

(n+1)*(2*n+1)*a(n) -2*(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012

G.f.: (c(sqrt(x)) - c(-sqrt(x)))/(2*sqrt(x)) = (2-(sqrt(1-4*sqrt(x)) + sqrt(1+4*sqrt(x))))/(4*x), with the g.f. c(x) of the Catalan numbers A000108. - Wolfdieter Lang, Feb 23 2014

a(n) = sum(k=0..n, (k+1)^2*binomial(2*(n+1),n-k)^2)/(n+1)^2. - Vladimir Kruchinin, Oct 14 2014

G.f.: A(x) = (1/x)*(inverse series of x - 5*x^2 + 8*x^3 - 4*x^4). - Vladimir Kruchinin, Oct 31 2014

a(n) ~ sqrt(2)*16^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Aug 02 2016

EXAMPLE

sqrt(1/2*(1+sqrt(1-x))) = 1 - 1/8*x - 5/128*x^2 - 42/2048*x^3 - ...

MAPLE

with(combstruct):bin := {B=Union(Z, Prod(B, B))}: seq (count([B, bin, unlabeled], size=2*n), n=1..18); # Zerinvary Lajos, Dec 05 2007

MATHEMATICA

CoefficientList[ Series[1 + (HypergeometricPFQ[{3/4, 1, 5/4}, {3/2, 2}, 16 x] - 1), {x, 0, 17}], x]

CatalanNumber[Range[1, 41, 2]] (* Harvey P. Dale, Jul 25 2011 *)

PROG

(Mupad) combinat::catalan(2*n+1)$ n = 0..24 # Zerinvary Lajos, Jul 02 2008

(Mupad) combinat::dyckWords::count(2*n+1)$ n = 0..24 # Zerinvary Lajos, Jul 02 2008

(MAGMA) [Factorial(4*n+2)/(Factorial(2*n+1)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Sep 13 2011

(PARI) a(n)=binomial(4*n+2, 2*n+1)/(2*n+2) \\ Charles R Greathouse IV, Sep 13 2011

(Maxima) a(n):=sum((k+1)^2*binomial(2*(n+1), n-k)^2, k, 0, n)/(n+1)^2; /* Vladimir Kruchinin, Oct 14 2014 */

CROSSREFS

Cf. A048990 (Catalan numbers with even index), A024491, A000108, A000894, A228329.

Sequence in context: A082145 A126765 A228793 * A217805 A217808 A151334

Adjacent sequences:  A024489 A024490 A024491 * A024493 A024494 A024495

KEYWORD

nonn,easy,nice

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 05:41 EST 2017. Contains 295868 sequences.