login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A024492 Catalan numbers with odd index: a(n) = binomial(4*n+2, 2*n+1)/(2*n+2). 16
1, 5, 42, 429, 4862, 58786, 742900, 9694845, 129644790, 1767263190, 24466267020, 343059613650, 4861946401452, 69533550916004, 1002242216651368, 14544636039226909, 212336130412243110, 3116285494907301262 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) and Catalan(n) have the same 2-adic valuation (equal to 1 less than the sum of the digits in the binary representation of (n + 1)). In particular, a(n) is odd iff n is of the form 2^m - 1. - Peter Bala, Aug 02 2016

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..100

FORMULA

G.f.: A(x) = 1/2*x^-1*(1-sqrt(1/2*(1+sqrt(1-16*x)))).

G.f.: 3F2([3/4, 1, 5/4], [3/2, 2], 16*x). - Olivier Gérard, Feb 16 2011

a(n) = 4^n*binomial(2n+1/2, n)/(n+1). - Paul Barry, May 10 2005

a(n) = binomial(4n+1,2n+1)/(n+1). - Paul Barry, Nov 09 2006

a(n) = (1/(2*Pi)*integral(x=-2..2, (2+x)^(2*n)*sqrt((2-x)*(2+x))). - Peter Luschny, Sep 12 2011

(n+1)*(2*n+1)*a(n) -2*(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, Nov 26 2012

G.f.: (c(sqrt(x)) - c(-sqrt(x)))/(2*sqrt(x)) = (2-(sqrt(1-4*sqrt(x)) + sqrt(1+4*sqrt(x))))/(4*x), with the g.f. c(x) of the Catalan numbers A000108. - Wolfdieter Lang, Feb 23 2014

a(n) = sum(k=0..n, (k+1)^2*binomial(2*(n+1),n-k)^2)/(n+1)^2. - Vladimir Kruchinin, Oct 14 2014

G.f.: A(x) = (1/x)*(inverse series of x - 5*x^2 + 8*x^3 - 4*x^4). - Vladimir Kruchinin, Oct 31 2014

a(n) ~ sqrt(2)*16^n/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Aug 02 2016

EXAMPLE

sqrt(1/2*(1+sqrt(1-x))) = 1 - 1/8*x - 5/128*x^2 - 42/2048*x^3 - ...

MAPLE

with(combstruct):bin := {B=Union(Z, Prod(B, B))}: seq (count([B, bin, unlabeled], size=2*n), n=1..18); # Zerinvary Lajos, Dec 05 2007

MATHEMATICA

CoefficientList[ Series[1 + (HypergeometricPFQ[{3/4, 1, 5/4}, {3/2, 2}, 16 x] - 1), {x, 0, 17}], x]

CatalanNumber[Range[1, 41, 2]] (* Harvey P. Dale, Jul 25 2011 *)

PROG

(MuPAD) combinat::catalan(2*n+1)$ n = 0..24 // Zerinvary Lajos, Jul 02 2008

(MuPAD) combinat::dyckWords::count(2*n+1)$ n = 0..24 // Zerinvary Lajos, Jul 02 2008

(MAGMA) [Factorial(4*n+2)/(Factorial(2*n+1)*Factorial(2*n+2)): n in [0..20]]; // Vincenzo Librandi, Sep 13 2011

(PARI) a(n)=binomial(4*n+2, 2*n+1)/(2*n+2) \\ Charles R Greathouse IV, Sep 13 2011

(Maxima) a(n):=sum((k+1)^2*binomial(2*(n+1), n-k)^2, k, 0, n)/(n+1)^2; /* Vladimir Kruchinin, Oct 14 2014 */

CROSSREFS

Cf. A048990 (Catalan numbers with even index), A024491, A000108, A000894, A228329.

Sequence in context: A082145 A126765 A228793 * A217805 A217808 A151334

Adjacent sequences:  A024489 A024490 A024491 * A024493 A024494 A024495

KEYWORD

nonn,easy,nice

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Wolfdieter Lang

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 05:17 EDT 2018. Contains 316304 sequences. (Running on oeis4.)