login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A228329
a(n) = Sum_{k=0..n} (k+1)^2*T(n,k)^2 where T(n,k) is the Catalan triangle A039598.
8
1, 8, 98, 1320, 18590, 268736, 3952228, 58837680, 883941750, 13373883600, 203487733020, 3110407163760, 47726453450988, 734694122886080, 11341161925265480, 175489379096245984, 2721169178975361702, 42273090191785999728, 657788911222324942060, 10250564041646388681200
OFFSET
0,2
COMMENTS
Let h(m) denote the sequence whose n-th term is Sum_{k=0..n} (k+1)^m*T(n,k)^2, where T(n,k) is the Catalan triangle A039598. This is h(2).
LINKS
Pedro J. Miana, Natalia Romero, Moments of combinatorial and Catalan numbers, Journal of Number Theory, Volume 130, Issue 8, August 2010, Pages 1876-1887. See Remark 3 p. 1882. Omega2(n) = a(n-1).
Yidong Sun and Fei Ma, Four transformations on the Catalan triangle, arXiv:1305.2017 [math.CO], 2013.
Yidong Sun and Fei Ma, Some new binomial sums related to the Catalan triangle, Electronic Journal of Combinatorics 21(1) (2014), #P1.33.
FORMULA
Conjecture: n*(2*n+1)*a(n) + 2*(-26*n^2+25*n-11)*a(n-1) + 20*(4*n-5)*(4*n-7)*a(n-2) = 0. - R. J. Mathar, Sep 08 2013
a(n) = ((4n)!*(3n+1))/((2n)!^2*(2n+1)) = binomial(4n,2n)*(3n+1)/(2n+1). - Philippe Deléham, Nov 25 2013
Therefore a(n) = A051960(2*n) / 2. - F. Chapoton, Jun 14 2024
From Peter Luschny, Nov 26 2013: (Start)
a(n) = 16^n*(3*n+1)*gamma(2*n+1/2)/(sqrt(Pi)*gamma(2*n+2)).
a(n) = a(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n > 0 else 1.
a(n) = [x^n] I*HeunG(8/5,0,-1/4,1/4,3/2,1/2,16*x)/sqrt(16*x-1) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunG is the Heun general function. (End)
MAPLE
B:=(n, k)->binomial(2*n, n-k) - binomial(2*n, n-k-2); #A039598
Omega:=(m, n)->add((k+1)^m*B(n, k)^2, k=0..n);
h:=m->[seq(Omega(m, n), n=0..20)];
h(2);
# Second solution:
h := n -> I*HeunG(8/5, 0, -1/4, 1/4, 3/2, 1/2, 16*x)/sqrt(16*x-1);
seq(coeff(series(h(x), x, n+2), x, n), n=0..19); # Peter Luschny, Nov 26 2013
MATHEMATICA
a[n_] := Binomial[4n, 2n] (3n+1)/(2n+1);
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 30 2018, after Philippe Deléham *)
PROG
(Sage)
@CachedFunction
def A228329(n):
return A228329(n-1)*(6*n+2)*(4*n-3)*(4*n-1)/(n*(2*n+1)*(3*n-2)) if n>0 else 1
[A228329(n) for n in (0..19)] # Peter Luschny, Nov 26 2013
CROSSREFS
Cf. A039598, A000108, A024492 (h(0)), A000894 (h(1)), A000515 (h(3)), A228330 (h(4)), A228331 (h(5)) - A228333 (h(7)).
Sequence in context: A116229 A099150 A199029 * A228794 A366035 A211869
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 26 2013
STATUS
approved