login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201550
Number of arrays of n integers in -6..6 with sum zero.
9
1, 1, 13, 127, 1469, 17151, 204763, 2473325, 30162301, 370487485, 4577127763, 56813989827, 707972099627, 8851373201919, 110976634957761, 1394804756117877, 17567994350713469, 221690794842728445, 2802194053806820153
OFFSET
0,3
COMMENTS
Also largest coefficient of (1+x+...+x^12)^n. - Vaclav Kotesovec, Aug 09 2013
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..450 (terms 1..210 from R. H. Hardin) [It was suggested that the initial terms of this b-file were wrong, but in fact they are correct. - N. J. A. Sloane, Jan 19 2019]
Vaclav Kotesovec, Recurrence
FORMULA
a(n) ~ 13^n / sqrt(28*Pi*n). - Vaclav Kotesovec, Aug 09 2013
a(n) = Sum_{k = 0..floor(n/2)} (-1)^k * binomial(n, k)*binomial(7*n-13*k-1, n-1). - Peter Bala, Oct 16 2024
EXAMPLE
Some solutions for n=5
.-2...-5...-2...-1....3...-6....0...-3....1....6...-6...-2....5....0...-4...-3
..2...-3...-2....3....0...-1....6...-4....6....1....5....2...-1....3....2....3
..0...-4....4...-6...-4....1...-3....0...-4...-5....0...-6...-3....0....4...-4
..0....6....3....5...-5....6....0....4....3...-4....4....0...-5...-3....3...-1
..0....6...-3...-1....6....0...-3....3...-6....2...-3....6....4....0...-5....5
MAPLE
seq(add((-1)^k * binomial(n, k)*binomial(7*n-13*k-1, n-1), k = 0..floor(n/2)), n = 0..20); # Peter Bala, Oct 16 2024
MATHEMATICA
Table[Coefficient[Expand[Sum[x^j, {j, 0, 12}]^n], x^(6*n)], {n, 1, 20}] (* Vaclav Kotesovec, Aug 09 2013 *)
PROG
(PARI) {a(n) = polcoeff((sum(k=0, 12, x^k))^n, 6*n, x)} \\ Seiichi Manyama, Dec 14 2018
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Dec 02 2011
EXTENSIONS
a(0)=1 prepended by Seiichi Manyama, Dec 14 2018
STATUS
approved