The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A018901 Central hexanomial coefficients: largest coefficient of (1 + x + ... + x^5)^n. 17
 1, 1, 6, 27, 146, 780, 4332, 24017, 135954, 767394, 4395456, 25090131, 144840476, 833196442, 4836766584, 27981391815, 163112472594, 947712321234, 5542414273884, 32312202610863, 189456975899496, 1107575676600876 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Greatest multiplicity of one- or two-dimensional standard representation of Lie algebras sl(2) in decomposition of tensor power F6^k, where F6 is the standard 6-dimensional irreducible representation of sl(2). - Leonid Bedratyuk, Jul 22 2004 Sum_{k=0..floor(5*n/12)} (-1)^k*binomial(n,k)*binomial(n + floor(5*n/2) - 6*k - 1, n-1). - Warut Roonguthai, May 21 2006 LINKS T. D. Noe, Table of n, a(n) for n = 0..200 Vaclav Kotesovec, Recurrence FORMULA a(n) ~ 6^n * sqrt(6/(35*Pi*n)). - Vaclav Kotesovec, Aug 09 2013 EXAMPLE Number of ways of getting most likely sum using n 6-sided dice (e.g., for n=2, 7 is the most prevalent sum and there are 6 different ways to get it: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1). MAPLE sum((-1)^(k)*binomial(n, k)*binomial(n+floor(5*n/2)-6*k-1, n-1), k=0..floor(5*n/12)); # Warut Roonguthai, May 21 2006 MATHEMATICA Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 5}]^n], x^Floor[5*n/2]], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 09 2013 *) CROSSREFS Cf. A001405, A002426, A005190, A005191, A025012, A025013, A025014. Sequence in context: A323928 A360082 A174634 * A215704 A137968 A062512 Adjacent sequences: A018898 A018899 A018900 * A018902 A018903 A018904 KEYWORD nonn AUTHOR Jonn Dalton jdalton(AT)vnet.ibm.com STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 3 14:25 EDT 2023. Contains 363116 sequences. (Running on oeis4.)