|
|
A018901
|
|
Central hexanomial coefficients: largest coefficient of (1 + x + ... + x^5)^n.
|
|
17
|
|
|
1, 1, 6, 27, 146, 780, 4332, 24017, 135954, 767394, 4395456, 25090131, 144840476, 833196442, 4836766584, 27981391815, 163112472594, 947712321234, 5542414273884, 32312202610863, 189456975899496, 1107575676600876
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Greatest multiplicity of one- or two-dimensional standard representation of Lie algebras sl(2) in decomposition of tensor power F6^k, where F6 is the standard 6-dimensional irreducible representation of sl(2). - Leonid Bedratyuk, Jul 22 2004
Sum_{k=0..floor(5*n/12)} (-1)^k*binomial(n,k)*binomial(n + floor(5*n/2) - 6*k - 1, n-1). - Warut Roonguthai, May 21 2006
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 0..200
Vaclav Kotesovec, Recurrence
|
|
FORMULA
|
a(n) ~ 6^n * sqrt(6/(35*Pi*n)). - Vaclav Kotesovec, Aug 09 2013
|
|
EXAMPLE
|
Number of ways of getting most likely sum using n 6-sided dice (e.g., for n=2, 7 is the most prevalent sum and there are 6 different ways to get it: 1+6, 2+5, 3+4, 4+3, 5+2, 6+1).
|
|
MAPLE
|
sum((-1)^(k)*binomial(n, k)*binomial(n+floor(5*n/2)-6*k-1, n-1), k=0..floor(5*n/12)); # Warut Roonguthai, May 21 2006
|
|
MATHEMATICA
|
Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 5}]^n], x^Floor[5*n/2]], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)
|
|
CROSSREFS
|
Cf. A001405, A002426, A005190, A005191, A025012, A025013, A025014.
Sequence in context: A323928 A360082 A174634 * A215704 A137968 A062512
Adjacent sequences: A018898 A018899 A018900 * A018902 A018903 A018904
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Jonn Dalton jdalton(AT)vnet.ibm.com
|
|
STATUS
|
approved
|
|
|
|