|
|
A025013
|
|
Central octonomial coefficients: largest coefficient of (1+x+...+x^7)^n.
|
|
13
|
|
|
1, 1, 8, 48, 344, 2460, 18152, 134512, 1012664, 7635987, 58199208, 443658688, 3409213016, 26184550496, 202384723528, 1562970918720, 12133130451576, 94094281551304, 732910480638272, 5702603044247504, 44538031693977544
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Generally, largest coefficient of (1+x+...+x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). - Vaclav Kotesovec, Aug 09 2013
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 7}]^n], x^Floor[7*n/2]], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 09 2013 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|