The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A172111 a(n) is the number of ordered partitions of {1, 1, 1, 1, 2, 3, ..., n-3}. 2
 0, 0, 0, 8, 48, 368, 3408, 36848, 454608, 6294128, 96556368, 1624775408, 29744591568, 588384837488, 12503968334928, 284065406275568, 6869235761650128, 176150548586638448, 4774198652678411088 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) is T_4(n) in the Griffiths and Mezo reference. - G. C. Greubel, Apr 15 2022 LINKS G. C. Greubel, Table of n, a(n) for n = 1..400 M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5. FORMULA a(n) = Sum_{m=1..n} Sum_{j=0..m} binomial(m,j)*binomial(j+3,4)*(-1)^(m-j)*j^(n-4), for n>=4, with a(n) = 0 for n < 4. a(n) ~ n! / (48 * log(2)^(n+1)). - Vaclav Kotesovec, Apr 15 2022 MATHEMATICA f[r_, n_]:= If[n<4, 0, Sum[Sum[Binomial[m, l]Binomial[l+r-1, r](-1)^(m-l)l^(n-r), {l, m}], {m, n}]]; Table[f[4, n], {n, 25}] PROG (Magma) [0, 0, 0] cat [(&+[ (&+[Binomial(k, j)*Binomial(j+3, 4)*(-1)^(k-j)*j^(n-4): j in [0..k]]): k in [1..n]]): n in [4..25]]; // G. C. Greubel, Apr 15 2022 (Sage) [0, 0, 0]+[sum(sum(binomial(k, j)*binomial(j+3, 4)*(-1)^(k+j)*j^(n-4) for j in (0..k)) for k in (1..n)) for n in (4..25)] # G. C. Greubel, Apr 15 2022 CROSSREFS This gives the row sums of A172108. Cf. A172109, A172110. Sequence in context: A025013 A215706 A200161 * A144014 A131681 A077708 Adjacent sequences: A172108 A172109 A172110 * A172112 A172113 A172114 KEYWORD nonn AUTHOR Martin Griffiths, Jan 25 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 22:14 EDT 2023. Contains 365582 sequences. (Running on oeis4.)