OFFSET
1,4
COMMENTS
a(n) is T_4(n) in the Griffiths and Mezo reference. - G. C. Greubel, Apr 15 2022
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..400
M. Griffiths and I. Mezo, A generalization of Stirling Numbers of the Second Kind via a special multiset, JIS 13 (2010) #10.2.5.
FORMULA
a(n) = Sum_{m=1..n} Sum_{j=0..m} binomial(m,j)*binomial(j+3,4)*(-1)^(m-j)*j^(n-4), for n>=4, with a(n) = 0 for n < 4.
a(n) ~ n! / (48 * log(2)^(n+1)). - Vaclav Kotesovec, Apr 15 2022
MATHEMATICA
f[r_, n_]:= If[n<4, 0, Sum[Sum[Binomial[m, l]Binomial[l+r-1, r](-1)^(m-l)l^(n-r), {l, m}], {m, n}]]; Table[f[4, n], {n, 25}]
PROG
(Magma) [0, 0, 0] cat [(&+[ (&+[Binomial(k, j)*Binomial(j+3, 4)*(-1)^(k-j)*j^(n-4): j in [0..k]]): k in [1..n]]): n in [4..25]]; // G. C. Greubel, Apr 15 2022
(Sage) [0, 0, 0]+[sum(sum(binomial(k, j)*binomial(j+3, 4)*(-1)^(k+j)*j^(n-4) for j in (0..k)) for k in (1..n)) for n in (4..25)] # G. C. Greubel, Apr 15 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Martin Griffiths, Jan 25 2010
STATUS
approved