login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203799
G.f.: Sum_{n>=0} (n-2*x)^n * x^n / (1 + n*x - 2*x^2)^n.
0
1, 1, 1, 8, 48, 312, 2280, 18720, 171360, 1733760, 19232640, 232243200, 3033676800, 42631142400, 641383142400, 10287038361600, 175228365312000, 3159341273088000, 60111175348224000, 1203646256676864000, 25302180885037056000, 557134559872450560000, 12823826485099069440000
OFFSET
0,4
FORMULA
a(n) = (n^2 + n - 4)/2 * (n-1)!, for n>1 with a(0)=a(1)=1.
E.g.f.: 1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x).
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 1/(1-x)^3 - 2*x/(1-x).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 48*x^4 + 312*x^5 + 2280*x^6 +...
where
A(x) = 1 + (1-2*x)*x/(1+x-2*x^2) + (2-2*x)^2*x^2/(1+2*x-2*x^2)^2 + (3-2*x)^3*x^3/(1+3*x-2*x^2)^3 + (4-2*x)^4*x^4/(1+4*x-2*x^2)^4 + (5-2*x)^5*x^5/(1+5*x-2*x^2)^5 +...
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, (m-2*x)^m*x^m/(1+m*x-2*x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=if(n==0||n==1, 1, (n^2 + n - 4)/2 * (n-1)!)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A037507 A037690 A180031 * A095897 A220251 A025013
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 09 2013
STATUS
approved