login
A203800
a(n) = (1/n) * Sum_{d|n} moebius(n/d) * Lucas(d)^(d-1), where Lucas(n) = A000032(n).
15
1, 1, 5, 85, 2928, 314925, 84974760, 63327890015, 123670531939440, 644385861467631972, 8853970669063185618000, 321538767413685546538468385, 30768712746239178236068160093280, 7755868453482819803691622493685140880, 5144106193113274410507722020733942141881664
OFFSET
1,3
LINKS
FORMULA
G.f.: 1/Product_{n>=1} (1 - Lucas(n)*x^n + (-1)^n*x^(2*n))^a(n) = exp(Sum_{n>=1} Lucas(n)^n * x^n/n), which is the g.f. of A156216.
G.f.: Product_{n>=1} G_n(x^n)^a(n) = exp(Sum_{n>=1} Lucas(n)^n * x^n/n) where G_n(x^n) = Product_{k=0..n-1} G(u^k*x) where G(x) = 1/(1-x-x^2) and u is an n-th root of unity.
EXAMPLE
G.f.: F(x) = 1/((1-x-x^2) * (1-3*x^2+x^4) * (1-4*x^3-x^6)^5 * (1-7*x^4+x^8)^85 * (1-11*x^5-x^10)^2928 * (1-18*x^6+x^12)^314925 * (1-29*x^7-x^14)^84974760 * (1-47*x^8+x^16)^63327890015 * (1-76*x^9-x^18)^123670531939440 *...).
where F(x) = exp( Sum_{n>=1} Lucas(n)^n * x^n/n ) = g.f. of A156216:
F(x) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 +...
so that the logarithm of F(x) begins:
log(F(x)) = x + 3^2*x^2/2 + 4^3*x^3/3 + 7^4*x^4/4 + 11^5*x^5/5 + 18^6*x^6/6 + 29^7*x^7/7 + 47^8*x^8/8 + 76^9*x^9/9 + 123^10*x^10/10 +...+ Lucas(n)^n*x^n +...
MATHEMATICA
a[n_] := 1/n DivisorSum[n, MoebiusMu[n/#] LucasL[#]^(#-1)&]; Array[a, 15] (* Jean-François Alcover, Dec 23 2015 *)
PROG
(PARI) {a(n)=if(n<1, 0, sumdiv(n, d, moebius(n/d)*(fibonacci(d-1)+fibonacci(d+1))^(d-1))/n)}
(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}
{a(n)=local(F=exp(sum(m=1, n, Lucas(m)^m*x^m/m)+x*O(x^n))); if(n==1, 1, polcoeff(F*prod(k=1, n-1, (1 - Lucas(k)*x^k + (-1)^k*x^(2*k) +x*O(x^n))^a(k)), n)/Lucas(n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 06 2012
STATUS
approved