login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A277354 a(n) = Product_{k=1..n} (4*k^2+1). 3
1, 5, 85, 3145, 204425, 20646925, 2993804125, 589779412625, 151573309044625, 49261325439503125, 19753791501240753125, 9580588878101765265625, 5527999782664718558265625, 3742455852864014463945828125, 2937827844498251354197475078125 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In general, for m>0, Product_{k=1..n} (m*k^2+1) is asymptotic to 2*m^(n+1/2) * n^(2*n+1) * sinh(Pi/sqrt(m)) / exp(2*n).
LINKS
FORMULA
a(n) = (-1)^(n+1) * A101928(n+2).
a(n) ~ 2^(2*n+2) * n^(2*n+1) * sinh(Pi/2) / exp(2*n).
a(n) = 2^(2*n+1) * |Gamma(1 + i/2 + n)|^2 * sinh(Pi/2)/Pi. - Vladimir Reshetnikov, Oct 10 2016
MATHEMATICA
Table[Product[4*k^2+1, {k, 1, n}], {n, 0, 15}]
Round@Table[2^(2 n + 1) Abs[Gamma[1 + I/2 + n]]^2 Sinh[Pi/2]/Pi, {n, 0, 15}] (* Vladimir Reshetnikov, Oct 10 2016 *)
PROG
(PARI) a(n) = prod(k=1, n, (4*k^2+1)); \\ Michel Marcus, Oct 11 2016
CROSSREFS
Sequence in context: A280575 A318635 A203800 * A101928 A012788 A208886
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 10 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 16:48 EDT 2024. Contains 371666 sequences. (Running on oeis4.)