login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277351
Value of (n+1,n) concatenated in binary representation.
2
5, 14, 19, 44, 53, 62, 71, 152, 169, 186, 203, 220, 237, 254, 271, 560, 593, 626, 659, 692, 725, 758, 791, 824, 857, 890, 923, 956, 989, 1022, 1055, 2144, 2209, 2274, 2339, 2404, 2469, 2534, 2599, 2664, 2729, 2794, 2859, 2924, 2989, 3054, 3119, 3184, 3249, 3314
OFFSET
1,1
LINKS
FORMULA
a(n) = (n+1) * 2^A070939(n) + n.
G.f.: (1-x)^(-2)*(5*x - 2*x^2 + Sum_{m>=1} ((2^(2*m)+2^m)*x^(2^m) - 2^(2*m)*x^(2^m+1))). - Robert Israel, Oct 14 2016
EXAMPLE
Binary representation of 12 and 13 are 1100 and 1101. Then, concat(1101,1100) = 11011100 converted in decimal representation is 220.
MAPLE
f:= n -> (n+1)*2^(1+ilog2(n))+n:
map(f, [$1..100]); # Robert Israel, Oct 14 2016
MATHEMATICA
Table[FromDigits[Join @@ Map[IntegerDigits[#, 2] &, {n + 1, n}], 2], {n, 50}] (* Michael De Vlieger, Oct 14 2016 *)
PROG
(PARI) a(n) = subst(Pol(concat(binary(n+1), binary(n))), x, 2); \\ Michel Marcus, Oct 10 2016
(PARI) a(n) = (n+1)*2^(1+logint(n, 2)) + n; \\ after 2nd Maple; Michel Marcus, Oct 15 2016
(Python)
def a(n): return int(bin(n+1)[2:] + bin(n)[2:], 2)
print([a(n) for n in range(1, 51)]) # Michael S. Branicky, May 14 2021
CROSSREFS
KEYWORD
nonn,base,easy,changed
AUTHOR
Paolo P. Lava, Oct 10 2016
STATUS
approved