The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A180031 Number of n-move paths on a 3 X 3 chessboard of a queen starting or ending in the central square. 4
 1, 8, 48, 304, 1904, 11952, 74992, 470576, 2952816, 18528688, 116265968, 729559344, 4577924464, 28726097072, 180253881072, 1131078181936, 7097421958256, 44535735246768, 279458051899888, 1753576141473584 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The a(n) represent the number of n-move paths of a chess queen starting or ending in the central square (m = 5) on a 3 X 3 chessboard. The other squares lead to A180030. To determine the a(n) we can either sum the components of the column vector A^n[k,m], with A the adjacency matrix of the queen's graph, or we can sum the components of the row vector A^n[m,k], see the Maple program. Closely related with this sequence are the red queen sequences, see A180028 and A180032. This sequence belongs to a family of sequences with g.f. (1+k*x)/(1 - 5*x - (k+5)*x^2). The members of this family that are red queen sequences are A180031 (k=3; this sequence), A152240 (k=2), A000400 (k=1), A057088 (k=0), A122690 (k=-1), A180036 (k=-2), A180038 (k=-3), A015449 (k=-4) and A000007 (k=-5). Other members of this family are A030221 (k= -6), 3*A109114 (k=-8), 4*A020989 (k=-9), 6*A166060 (k=-11). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (5, 8). FORMULA G.f.: (1+3*x)/(1 - 5*x - 8*x^2). a(n) = 5*a(n-1) + 8*a(n-2) with a(0) = 1 and a(1) = 8. a(n) = ((A+11)*A^(-n-1) + (B+11)*B^(-n-1))/57 with A = (-5+sqrt(57))/16 and B = (-5-sqrt(57))/16. MAPLE with(LinearAlgebra): nmax:=19; m:=5; A:= [1, 1, 1, 1, 0, 1, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A, [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax); MATHEMATICA LinearRecurrence[{5, 8}, {1, 8}, 50] (* Vincenzo Librandi, Nov 15 2011 *) PROG (MAGMA) I:=[1, 8]; [n le 2 select I[n] else 5*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011 CROSSREFS Sequence in context: A051823 A037507 A037690 * A203799 A095897 A220251 Adjacent sequences:  A180028 A180029 A180030 * A180032 A180033 A180034 KEYWORD nonn,easy AUTHOR Johannes W. Meijer, Aug 09 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 2 10:57 EDT 2020. Contains 334771 sequences. (Running on oeis4.)