login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180036
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 - 2*x)/(1 - 5*x - 3*x^2).
5
1, 3, 18, 99, 549, 3042, 16857, 93411, 517626, 2868363, 15894693, 88078554, 488076849, 2704619907, 14987330082, 83050510131, 460214540901, 2550224234898, 14131764797193, 78309496690659, 433942777844874
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 56 red queen vectors, i.e., A[5] vector, with decimal values varying between 7 and 448. The corner and side squares lead for these vectors to A180035.
FORMULA
G.f.: (1-2*x)/(1 - 5*x - 3*x^2).
a(n) = 5*a(n-1) + 3*a(n-2) with a(0) = 1 and a(1) = 3.
a(n) = ((1+16*A)*A^(-n-1) + (1+16*B)*B^(-n-1))/37 with A = (-5+sqrt(37))/6 and B = (-5-sqrt(37))/6.
a(n) = Sum_{k=0..n} A202395(n,k)*2^k. - Philippe Deléham, Dec 21 2011
MAPLE
with(LinearAlgebra): nmax:=21; m:=5; A[5]:= [0, 0, 0, 0, 0, 0, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{5, 3}, {1, 3}, 201] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 3]; [n le 2 select I[n] else 5*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
Sequence in context: A081151 A132848 A321032 * A038158 A327828 A009021
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
EXTENSIONS
Second formula corrected by Vincenzo Librandi, Nov 15 2011
STATUS
approved