login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180029
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 6*x - 2*x^2).
3
1, 8, 50, 316, 1996, 12608, 79640, 503056, 3177616, 20071808, 126786080, 800860096, 5058732736, 31954116608, 201842165120, 1274961223936, 8053451673856, 50870632491008, 321330698293760, 2029725454744576
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vector, with decimal values 255, 383, 447, 479, 503, 507, 509 and 510. The other squares lead for these vectors to A135030.
FORMULA
G.f.: (1+2*x)/(1 - 6*x - 2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with a(0) = 1 and a(1) = 8.
a(n) = ((5-4*A)*A^(-n-1) + (5-4*B)*B^(-n-1))/22 with A = (-3+sqrt(11))/2 and B = (-3-sqrt(11))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A016116(n+1)/(A041015(n-1)*sqrt(11) - A041014(n-1)) for n >= 1.
MAPLE
with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [0, 1, 1, 1, 1, 1, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{6, 2}, {1, 8}, 50 ] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1)+2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
Sequence in context: A240050 A221478 A287812 * A357479 A133129 A103458
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved