login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357479
a(n) = (n!/6) * Sum_{k=0..n-3} 1/k!.
3
0, 0, 0, 1, 8, 50, 320, 2275, 18256, 164388, 1644000, 18084165, 217010200, 2821132886, 39495860768, 592437911975, 9479006592160, 161143112067400, 2900576017214016, 55110944327067273, 1102218886541346600, 23146596617368279930, 509225125582102160000
OFFSET
0,5
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(k,3)/k!.
a(0) = 0; a(n) = n * a(n-1) + binomial(n,3).
E.g.f.: x^3/6 * exp(x)/(1-x).
G.f.: (1/6) * Sum_{k>=3} k! * x^k/(1-x)^(k+1).
MATHEMATICA
Table[n!/6 Sum[1/k!, {k, 0, n-3}], {n, 0, 30}] (* Harvey P. Dale, Apr 02 2023 *)
PROG
(PARI) a(n) = n!/6*sum(k=0, n-3, 1/k!);
(PARI) a(n) = n!*sum(k=0, n, binomial(k, 3)/k!);
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(serlaplace(x^3/6*exp(x)/(1-x))))
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=3, N, k!*x^k/(1-x)^(k+1))/6))
CROSSREFS
Column k=3 of A073107.
Sequence in context: A221478 A287812 A180029 * A133129 A103458 A339687
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 30 2022
STATUS
approved