login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357480
a(n) = (n!/24) * Sum_{k=0..n-4} 1/k!.
3
0, 0, 0, 0, 1, 10, 75, 560, 4550, 41076, 410970, 4521000, 54252495, 705283150, 9873965101, 148109477880, 2369751647900, 40285778016680, 725144004303300, 13777736081766576, 275554721635336365, 5786649154342069650, 127306281395525539615, 2928044472097087420000
OFFSET
0,6
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} binomial(k,4)/k!.
a(0) = 0; a(n) = n * a(n-1) + binomial(n,4).
E.g.f.: x^4/24 * exp(x)/(1-x).
G.f.: (1/24) * Sum_{k>=4} k! * x^k/(1-x)^(k+1).
PROG
(PARI) a(n) = n!/24*sum(k=0, n-4, 1/k!);
(PARI) a(n) = n!*sum(k=0, n, binomial(k, 4)/k!);
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(x^4/24*exp(x)/(1-x))))
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=4, N, k!*x^k/(1-x)^(k+1))/24))
CROSSREFS
Column k=4 of A073107.
Sequence in context: A346842 A081017 A238987 * A271476 A025015 A228416
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Sep 30 2022
STATUS
approved