login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A073107
Triangle T(n,k) read by rows, where e.g.f. for T(n,k) is exp((1+y)*x)/(1-x).
10
1, 2, 1, 5, 4, 1, 16, 15, 6, 1, 65, 64, 30, 8, 1, 326, 325, 160, 50, 10, 1, 1957, 1956, 975, 320, 75, 12, 1, 13700, 13699, 6846, 2275, 560, 105, 14, 1, 109601, 109600, 54796, 18256, 4550, 896, 140, 16, 1, 986410, 986409, 493200, 164388, 41076, 8190, 1344, 180, 18, 1
OFFSET
0,2
COMMENTS
Triangle is second binomial transform of A008290. - Paul Barry, May 25 2006
Ignoring signs, n-th row is the coefficient list of the permanental polynomial of the n X n matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 02 2012
LINKS
Wikipedia, Sheffer sequence.
FORMULA
O.g.f. for k-th column is (1/k!)*Sum_{i >= k} i!*x^i/(1-x)^(i+1).
For n > 0, T(n, 0) = floor(n!*exp(1)) = A000522(n), T(n, 1) = floor(n!*exp(1) - 1) = A007526(n), T(n, 2) = 1/2!*floor(n!*exp(1) - 1 - n) = A038155(n), T(n, 3) = 1/3!*floor(n!*exp(1) - 1 - n - n*(n - 1)), T(n, 4) = 1/4!*floor(n!*exp(1) - 1 - n - n*(n - 1) - n*(n - 1)*(n - 2)), ... .
Row sums give A010842.
E.g.f. for k-th column is (x^k/k!)*exp(x)/(1 - x).
O.g.f. for k-th row is n!*Sum_{k = 0..n} (1 + x)^k/k!.
T(n,k) = Sum_{j = 0..n} binomial(j,k)*n!/j!. - Paul Barry, May 25 2006
-exp(-x) * Sum_{k=0..n} T(n,k)*x^k = Integral (x+1)^n*exp(-x) dx = -exp(1)*Gamma(n+1,x+1). - Gerald McGarvey, Mar 15 2009
From Peter Bala, Sep 20 2012: (Start)
Exponential Riordan array [exp(x)/(1-x),x] belonging to the Appell subgroup, which factorizes in the Appell group as [1/1-x,x]*[exp(x),x] = A094587*A007318.
The n-th row polynomial R(n,x) of the triangle satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x + y) = Sum {k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type.
Matrix inverse of triangle is a signed version of A093375. (End)
From Tom Copeland, Oct 20 2015: (Start)
The raising operator, with D = d/dx, for the row polynomials is RP = x + d{log[e^D/(1-D)]}/dD = x + 1 + 1/(1-D) = x + 2 + D + D^2 + ..., i.e., RP R(n,x) = R(n+1,x).
This operator is the limit as t tends to 1 of the raising operator of the polynomials p(n,x;t) described in A046802, implying R(n,x) = p(n,x;1). Compare with the raising operator of A094587, x + 1/(1-D), and that of signed A093375, x - 1 - 1/(1-D).
From the Appell formalism, the row polynomials RI(n,x) of signed A093375 are the umbral inverse of this entry's row polynomials; that is, R(n,RI(.,x)) = x^n = RI(n,R(.,x)) under umbral composition. (End)
From Werner Schulte, Sep 07 2020: (Start)
T(n,k) = (n! / k!) * (Sum_{i=k..n} 1 / (n-i)!) for 0 <= k <= n.
T(n,k) = n * T(n-1,k) + binomial(n,k) for 0 <= k <= n with initial values T(0,0) = 1 and T(i,j) = 0 if j < 0 or j > i.
T(n,k) = A000522(n-k) * binomial(n,k) for 0 <= k <= n. (End)
EXAMPLE
exp((1 + y)*x)/(1 - x) =
1 +
1/1! * (2 + y) * x +
1/2! * (5 + 4*y + y^2) * x^2 +
1/3! * (16 + 15*y + 6*y^2 + y^3) * x^3 +
1/4! * (65 + 64*y + 30*y^2 + 8*y^3 + y^4) * x^4 +
1/5! * (326 + 325*y + 160*y^2 + 50*y^3 + 10*y^4 + y^5) * x^5 + ...
Triangle starts:
[0] 1;
[1] 2, 1;
[2] 5, 4, 1;
[3] 16, 15, 6, 1;
[4] 65, 64, 30, 8, 1;
[5] 326, 325, 160, 50, 10, 1;
[6] 1957, 1956, 975, 320, 75, 12, 1;
[7] 13700, 13699, 6846, 2275, 560, 105, 14, 1;
MAPLE
T := (n, k) -> binomial(n, k)*KummerU(k-n, k-n, 1);
seq(seq(simplify(T(n, k)), k = 0..n), n=0..8); # Peter Luschny, Oct 16 2024
MATHEMATICA
perm[m_List] := With[{v=Array[x, Length[m]]}, Coefficient[Times@@(m.v), Times@@v]] ;
A[q_] := Array[KroneckerDelta[#1, #2] + 1&, {q, q}] ;
n = 1 ; Print[{1}]; While[n < 10, Print[Abs[CoefficientList[perm[A[n] - IdentityMatrix[n] * k], k]]]; n++] (* John M. Campbell, Jul 02 2012 *)
A073107[n_, k_] := If[n == k, 1, Floor[E*(n - k)!]*Binomial[n, k]];
Table[A073107[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 16 2024 *)
PROG
(SageMath)
def T(n, k):
return sum(binomial(j, k) * factorial(n) // factorial(j) for j in range(n+1))
for n in range(8): print([T(n, k) for k in range(n+1)])
# Peter Luschny, Oct 16 2024
CROSSREFS
Cf. A008290, A008291, A046802, A093375 (unsigned inverse), A094587, A010842 (row sums), A000142 (alternating row sums), A367963 (central terms).
Column k=0..4 give A000522, A007526, A038155, A357479, A357480.
Sequence in context: A363732 A171515 A110271 * A248669 A103718 A113350
KEYWORD
easy,nonn,tabl
AUTHOR
Vladeta Jovovic, Aug 19 2002
EXTENSIONS
More terms from Emeric Deutsch, Feb 23 2004
STATUS
approved