The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A073107 Triangle T(n,k) read by rows, where e.g.f. for T(n,k) is exp((1+y)*x)/(1-x) (with n >= 0 and 0 <= k <= n). 8
 1, 2, 1, 5, 4, 1, 16, 15, 6, 1, 65, 64, 30, 8, 1, 326, 325, 160, 50, 10, 1, 1957, 1956, 975, 320, 75, 12, 1, 13700, 13699, 6846, 2275, 560, 105, 14, 1, 109601, 109600, 54796, 18256, 4550, 896, 140, 16, 1, 986410, 986409, 493200, 164388, 41076, 8190, 1344, 180, 18, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Triangle is second binomial transform of A008290. - Paul Barry, May 25 2006 Ignoring signs, n-th row is the coefficient list of the permanental polynomial of the n X n matrix with 2's along the main diagonal and 1's everywhere else (see Mathematica code below). - John M. Campbell, Jul 02 2012 LINKS Seiichi Manyama, Rows n = 0..139, flattened Wikipedia, Sheffer sequence. FORMULA O.g.f. for k-th column is (1/k!)*Sum_{i >= k} i!*x^i/(1-x)^(i+1). For n > 0, T(n, 0) = floor(n!*exp(1)) = A000522(n), T(n, 1) = floor(n!*exp(1) - 1) = A007526(n), T(n, 2) = 1/2!*floor(n!*exp(1) - 1 - n) = A038155(n), T(n, 3) = 1/3!*floor(n!*exp(1) - 1 - n - n*(n - 1)), T(n, 4) = 1/4!*floor(n!*exp(1) - 1 - n - n*(n - 1) - n*(n - 1)*(n - 2)), ... . Row sums give A010842. E.g.f. for k-th column is (x^k/k!)*exp(x)/(1 - x). O.g.f. for k-th row is n!*Sum_{k = 0..n} (1 + x)^k/k!. T(n,k) = Sum_{j = 0..n} binomial(j,k)*n!/j!. - Paul Barry, May 25 2006 -exp(-x) * Sum_{k=0..n} T(n,k)*x^k = Integral (x+1)^n*exp(-x) dx = -exp(1)*Gamma(n+1,x+1). - Gerald McGarvey, Mar 15 2009 From Peter Bala, Sep 20 2012: (Start) Exponential Riordan array [exp(x)/(1-x),x] belonging to the Appell subgroup, which factorizes in the Appell group as [1/1-x,x]*[exp(x),x] = A094587*A007318. The n-th row polynomial R(n,x) of the triangle satisfies d/dx(R(n,x)) = n*R(n-1,x), as well as R(n,x + y) = Sum {k = 0..n} binomial(n,k)*R(k,x)*y^(n-k). The row polynomials are a Sheffer sequence of Appell type. Matrix inverse of triangle is a signed version of A093375. (End) From Tom Copeland, Oct 20 2015: (Start) The raising operator, with D = d/dx, for the row polynomials is RP = x + d{log[e^D/(1-D)]}/dD = x + 1 + 1/(1-D) = x + 2 + D + D^2 + ..., i.e., RP R(n,x) = R(n+1,x). This operator is the limit as t tends to 1 of the raising operator of the polynomials p(n,x;t) described in A046802, implying R(n,x) = p(n,x;1). Compare with the raising operator of A094587, x + 1/(1-D), and that of signed A093375, x - 1 - 1/(1-D). From the Appell formalism, the row polynomials RI(n,x) of signed A093375 are the umbral inverse of this entry's row polynomials; that is, R(n,RI(.,x)) = x^n = RI(n,R(.,x)) under umbral composition. (End) From Werner Schulte, Sep 07 2020: (Start) T(n,k) = (n! / k!) * (Sum_{i=k..n} 1 / (n-i)!) for 0 <= k <= n. T(n,k) = n * T(n-1,k) + binomial(n,k) for 0 <= k <= n with initial values T(0,0) = 1 and T(i,j) = 0 if j < 0 or j > i. T(n,k) = A000522(n-k) * binomial(n,k) for 0 <= k <= n. (End) EXAMPLE exp((1 + y)*x)/(1 - x) = 1 + 1/1 * (2 + y) * x + 1/2! * (5 + 4*y + y^2) * x^2 + 1/3! * (16 + 15*y + 6*y^2 + y^3) * x^3 + 1/4! * (65 + 64*y + 30*y^2 + 8*y^3 + y^4) * x^4 + 1/5! * (326 + 325*y + 160*y^2 + 50*y^3 + 10*y^4 + y^5) * x^5 + ... MATHEMATICA Permanent[m_List] := With[{v=Array[x, Length[m]]}, Coefficient[Times@@(m.v), Times@@v]] ; A[q_] := Array[KroneckerDelta[#1, #2] + 1&, {q, q}] ; n = 1 ; While[n < 10, Print[Abs[CoefficientList[Permanent[A[n] - IdentityMatrix[n] * k], k]]]; n++] (* John M. Campbell, Jul 02 2012 *) CROSSREFS Cf. A008290, A008291, A046802, A093375 (unsigned inverse), A094587. Column k=0..4 give A000522, A007526, A038155, A357479, A357480. Sequence in context: A363732 A171515 A110271 * A248669 A103718 A113350 Adjacent sequences: A073104 A073105 A073106 * A073108 A073109 A073110 KEYWORD easy,nonn,tabl AUTHOR Vladeta Jovovic, Aug 19 2002 EXTENSIONS More terms from Emeric Deutsch, Feb 23 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 14:00 EDT 2024. Contains 375069 sequences. (Running on oeis4.)